Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 46(5): 705-13, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22681891

RESUMEN

Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation.


Asunto(s)
Diferenciación Celular/genética , Histonas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Línea Celular , Ensamble y Desensamble de Cromatina , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/fisiología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Multipotentes/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación
2.
EMBO Rep ; 10(8): 894-900, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19575011

RESUMEN

Post-translational histone modifications have essential roles in controlling nuclear processes; however, the specific mechanisms regulating these modifications and their combinatorial activities remain elusive. Cyclin-dependent kinase 9 (CDK9) regulates gene expression by phosphorylating transcriptional regulatory proteins, including the RNA polymerase II carboxy-terminal domain. Here, we show that CDK9 activity is essential for maintaining global and gene-associated levels of histone H2B monoubiquitination (H2Bub1). Furthermore, CDK9 activity and H2Bub1 help to maintain correct replication-dependent histone messenger RNA (mRNA) 3'-end processing. CDK9 knockdown consistently resulted in inefficient recognition of the correct mRNA 3'-end cleavage site and led to increased read-through of RNA polymerase II to an alternative downstream polyadenylation signal. Thus, CDK9 acts to integrate phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/fisiología , Histonas/metabolismo , ARN Mensajero/metabolismo , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Dactinomicina/farmacología , Diclororribofuranosil Benzoimidazol/farmacología , Flavonoides/farmacología , Humanos , Ratones , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Piperidinas/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación/genética
3.
J Inorg Biochem ; 120: 44-53, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23305964

RESUMEN

Two series of tetrazole-containing platinum(II) and palladium(II) chlorido complexes, trans-[ML(2)Cl(2)] (M=Pt, Pd) and cis-[PtL(2)Cl(2)]·nH(2)O (n=0, 1), where L is 1- or 2-substituted 5-aminotetrazole, have been synthesized and thoroughly characterized. Configuration of platinum(II) complexes obtained from the reaction of 5-aminotetrazoles with K(2)PtCl(4) has been found to vary depending on the nature of tetrazole derivatives and reaction conditions. According to in vitro cytotoxic evaluation, only platinum complexes display noticeable antiproliferative effect, and their cytotoxicity depends strongly on their geometry and hydrophobicity of the carrier ligands. The most promising complexes are cis-[Pt(1-apt)(2)Cl(2)]·H(2)O and cis-[Pt(2-abt)(2)Cl(2)]·H(2)O, where 1-apt is 5-amino-1-phenyltetrazole and 2-abt is 5-amino-2-tert-butyltetrazole. In comparison with cisplatin, they show comparable cytotoxic potency against cisplatin-sensitive human cancer cell lines, cis-[Pt(2-abt)(2)Cl(2)]·H(2)O performing substantially higher activity against cisplatin-resistant cell lines. Cell cycle studies in H1299 cell line indicated that cis-[Pt(2-abt)(2)Cl(2)]·H(2)O induced apoptosis launched from G2 accumulations. The DNA interaction with cis-[Pt(1-apt)(2)Cl(2)]·H(2)O was followed by UV spectroscopy, circular dichroism, hydrodynamic and electrophoretic mobility studies. Both cis-[Pt(1-apt)(2)Cl(2)]·H(2)O and cis-[Pt(2-abt)(2)Cl(2)]·H(2)O complexes appeared to be significantly less toxic than cisplatin in mice, while only compound cis-[Pt(1-apt)(2)Cl(2)]·H(2)O displayed noticeable efficacy in vivo.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/análogos & derivados , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Paladio/química , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Benzotiazoles/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Dicroismo Circular , Cisplatino/farmacología , ADN/química , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Femenino , Humanos , Isomerismo , Masculino , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Espectrofotometría Ultravioleta , Tetrazoles/química
4.
Cell Cycle ; 11(11): 2122-7, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22592529

RESUMEN

Cyclin-dependent kinase-9 (CDK9) plays a central role in transcriptional elongation and controls multiple cotranscriptional histone modifications, including histone H2B monoubiquitination (H2Bub1). Like other CDK9-dependent histone modifications, the role of CDK9 in maintaining H2Bub1 was shown to be partially dependent upon the phosphorylation status of Ser2 of the RNA polymerase II (RNAPII) C-terminal domain (CTD). Since mutation of Ser2 within the RNAPII CTD resulted in a milder effect on H2Bub1 compared with CDK9 knockdown, we explored whether another CDK9 target may also influence H2Bub1. Based on its homology to yeast Bur1, we hypothesized that CDK9 may directly phosphorylate and activate the ubiquitin-conjugating enzyme utilized for H2B monoubiquitination. Indeed, we demonstrate that UBE2A specifically interacts with CDK9, but not CDK2. Furthermore, UBE2A is phosphorylated by CDK9 in vitro and increases UBE2A activity. Interestingly, CDK9 knockdown not only decreases UBE2A phosphorylation and H2Bub1, but also significantly impairs the induction of UBE2A-dependent monoubiquitination of proliferating cell nuclear antigen (PCNA). Thus, we provide the first evidence that CDK9 is required for the activity of UBE2A in humans, and that its activity is not only required for maintaining H2Bub1, but also for the monoubiquitination of PCNA. The common involvement of these two ubiquitinations in distinct DNA repair pathways may provide a mechanistic rationale for further exploring CDK9 as a combinatorial target for increasing the efficacy of existing cancer therapies based on the induction of DNA damage and are repaired by mechanisms which require H2Bub1 and/or PCNA ubiquitination.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , Reparación del ADN , Células HCT116 , Histonas/metabolismo , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Polimerasa II/metabolismo , Ubiquitinación
5.
Cell Cycle ; 10(20): 3495-504, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22031019

RESUMEN

Many anticancer therapies function largely by inducing DNA double-strand breaks (DSBs) or altering the ability of cancer cells to repair them. Proper and timely DNA repair requires dynamic changes in chromatin assembly and disassembly characterized by histone H3 lysine 56 acetylation (H3K56ac) and phosphorylation of the variant histone H2AX (γH2AX). Similarly, histone H2B monoubiquitination (H2Bub1) functions in DNA repair, but its role in controlling dynamic changes in chromatin structure following DSBs and the histone chaperone complexes involved remain unknown. Therefore, we investigated the role of the H2B ubiquitin ligase RNF40 in the DSB response. We show that RNF40 depletion results in sustained H2AX phosphorylation and a decrease in rapid cell cycle checkpoint activation. Furthermore, RNF40 knockdown resulted in decreased H3K56ac and decreased recruitment of the facilitates chromatin transcription (FACT) complex to chromatin following DSB. Knockdown of the FACT component suppressor of Ty homolog-16 (SUPT16H) phenocopied the effects of RNF40 knockdown on both γH2AX and H3K56ac following DSB induction. Consistently, both RNF40 and SUPT16H were required for proper DNA end resection and timely DNA repair, suggesting that H2Bub1 and FACT cooperate to increase chromatin dynamics, which facilitates proper checkpoint activation and timely DNA repair. These results provide important mechanistic insights into the tumor suppressor function of H2Bub1 and provide a rational basis for pursuing H2Bub1-based therapies in conjunction with traditional chemo- and radiotherapy.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Ensayo Cometa , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Inmunohistoquímica , Fosforilación , ARN Interferente Pequeño/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
6.
Cell Cycle ; 8(22): 3636-42, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19844166

RESUMEN

Cyclin-dependent kinase-9 (CDK9) was originally characterized as a transcription elongation factor which regulates RNA Polymerase II (RNAPII) activity following transcriptional initiation. However, recent evidence from a number of studies have shown that CDK9 plays an important role in regulating not only RNAPII activity but also co-transcriptional histone modification and mRNA processing events such as splicing and 3' end processing. Importantly, our previous work and the work presented here demonstrate that CDK9 functions to guide a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3. This function appears to be dependent upon not only the phosphorylation of the RNA Polymerase II C-terminal domain but also upon other CDK9 targets such as the Suppressor of Ty Homolog-5 (SUPT5H), Negative Elongation Factor-E (NELF-E) and probably the human Rad6 homolog UBE2A. We provide a working model by which CDK9 may control co-transcriptional replication-dependent histone mRNA 3' end processing in an H2Bub1 and H3K4me3-dependent manner and uncover new and important differences between the functions of human CDK9 and its yeast counterparts Ctk1 and Bur1.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Quinasa 9 Dependiente de la Ciclina/fisiología , Histonas/fisiología , Modelos Biológicos , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA