Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202401407, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699860

RESUMEN

Semiochemicals can be used to manipulate insect behaviour for sustainable pest management strategies, but their high volatility is a major issue for their practical implementation. Inclusion of these molecules within porous materials is a potential solution to this issue, as it can allow for a slower and more controlled release. In this work, we demonstrate that a series of Zr(IV) and Al(III) metal-organic frameworks (MOFs) with channel-type pores enable controlled release of three semiochemicals over 100 days by pore size design, with the uptake and rate of release highly dependent on the pore size. Insight from grand canonical Monte Carlo simulations indicates that this is due to weaker MOF-guest interactions per guest molecule as the pore size increases. These MOFs are all stable post-release and can be reloaded to show near-identical re-release profiles. These results provide valuable insight on the diffusion behaviour of volatile guests in MOFs, and for the further development of porous materials for sustainable agriculture applications.

2.
Inorg Chem ; 53(18): 9509-15, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25148242

RESUMEN

A series of amine-functionalized mixed-linker metal-organic frameworks (MOFs) of idealized structural formula Zr6O4(OH)4(BDC)(6-6X)(ABDC)6X (where BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-aminobenzene-1,4-dicarboxylic acid) has been prepared by solvothermal synthesis. The materials have been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy with the aim of elucidating the effect that varying the degrees of amine functionalization has on the stability (thermal and chemical) and porosity of the framework. This work includes the first application of ultraviolet-visible light (UV-vis) spectroscopy in the quantification of ABDC in mixed-linker MOFs.

4.
ChemSusChem ; 7(12): 3382-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25302675

RESUMEN

A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.


Asunto(s)
Aminas/química , Dióxido de Carbono/química , Metales/química , Compuestos Orgánicos/química , Adsorción , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier
5.
Dalton Trans ; 42(18): 6450-8, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23467685

RESUMEN

FTIR spectroscopy and ab initio molecular modelling have been employed to probe the interaction between CO and Ni3(BTP)2, a thermally and chemically stable MOF. A combination of low pressure adsorption isotherms and FTIR spectroscopy has been utilised to study the material for its interaction with CO2 and H2. The experimental results indicate that despite an abundance of Ni(2+) coordination vacancies in the activated sample, the molecular probes considered in this study do not interact with them. These findings are in alignment with the data obtained by molecular modelling, in which it is shown that the unreactive diamagnetic, low spin state is more stable. Due to the strong N-donor character of the pyrazolate ligands on this material, the electrostatic potential map of the optimized low spin structure does not show any evidence of a region of positive potential typical of open metal sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA