Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 49: 128290, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34311087

RESUMEN

While the biochemistry of rhomboid proteases has been extensively studied since their discovery two decades ago, efforts to define the physiological roles of these enzymes are ongoing and would benefit from chemical probes that can be used to manipulate the functions of these proteins in their native settings. Here, we describe the use of activity-based protein profiling (ABPP) technology to conduct a targeted screen for small-molecule inhibitors of the mitochondrial rhomboid protease PARL, which plays a critical role in regulating mitophagy and cell death. We synthesized a series of succinimide-containing sulfonyl esters and sulfonamides and discovered that these compounds serve as inhibitors of PARL with the most potent sulfonamides having submicromolar affinity for the enzyme. A counterscreen against the bacterial rhomboid protease GlpG demonstrates that several of these compounds display selectivity for PARL over GlpG by as much as two orders of magnitude. Both the sulfonyl ester and sulfonamide scaffolds exhibit reversible binding and are able to engage PARL in mammalian cells. Collectively, our findings provide encouraging precedent for the development of PARL-selective inhibitors and establish N-[(arylsulfonyl)oxy]succinimides and N-arylsulfonylsuccinimides as new molecular scaffolds for inhibiting members of the rhomboid protease family.


Asunto(s)
Bencenosulfonatos/farmacología , Metaloproteasas/antagonistas & inhibidores , Proteínas Mitocondriales/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Succinimidas/farmacología , Sulfonamidas/farmacología , Bencenosulfonatos/síntesis química , Proteínas de Unión al ADN/antagonistas & inhibidores , Endopeptidasas , Escherichia coli/enzimología , Proteínas de Escherichia coli/antagonistas & inhibidores , Células HEK293 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Inhibidores de Proteasas/síntesis química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Succinimidas/síntesis química , Sulfonamidas/síntesis química
2.
iScience ; 24(4): 102315, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870132

RESUMEN

The acetylation of ATG9A within the endoplasmic reticulum (ER) lumen regulates the induction of reticulophagy. ER acetylation is ensured by AT-1/SLC33A1, a membrane transporter that maintains the cytosol-to-ER flux of acetyl-CoA. Defective AT-1 activity, as caused by heterozygous/homozygous mutations and gene duplication events, results in severe disease phenotypes. Here, we show that although the acetylation of ATG9A occurs in the ER lumen, the induction of reticulophagy requires ATG9A to engage FAM134B and SEC62 on the cytosolic side of the ER. To address this conundrum, we resolved the ATG9A interactome in two mouse models of AT-1 dysregulation: AT-1 sTg, a model of systemic AT-1 overexpression with hyperacetylation of ATG9A, and AT-1S113R/+, a model of AT-1 haploinsufficiency with hypoacetylation of ATG9A. We identified CALR and HSPB1 as two ATG9A partners that regulate the induction of reticulophagy as a function of ATG9A acetylation and discovered that ATG9A associates with several proteins that maintain ER proteostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA