Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
New Phytol ; 239(6): 2265-2276, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243529

RESUMEN

This work revisits a publication by Bean et al. (2018) that reports seven amino acid substitutions are essential for the evolution of l-DOPA 4,5-dioxygenase (DODA) activity in Caryophyllales. In this study, we explore several concerns which led us to replicate the analyses of Bean et al. (2018). Our comparative analyses, with structural modelling, implicate numerous residues additional to those identified by Bean et al. (2018), with many of these additional residues occurring around the active site of BvDODAα1. We therefore replicated the analyses of Bean et al. (2018) to re-observe the effect of their original seven residue substitutions in a BvDODAα2 background, that is the BvDODAα2-mut3 variant. Multiple in vivo assays, in both Saccharomyces cerevisiae and Nicotiana benthamiana, did not result in visible DODA activity in BvDODAα2-mut3, with betalain production always 10-fold below BvDODAα1. In vitro assays also revealed substantial differences in both catalytic activity and pH optima between BvDODAα1, BvDODAα2 and BvDODAα2-mut3 proteins, explaining their differing performance in vivo. In summary, we were unable to replicate the in vivo analyses of Bean et al. (2018), and our quantitative in vivo and in vitro analyses suggest a minimal effect of these seven residues in altering catalytic activity of BvDODAα2. We conclude that the evolutionary pathway to high DODA activity is substantially more complex than implied by Bean et al. (2018).


Asunto(s)
Betalaínas , Dioxigenasas , Levodopa , Mutación con Ganancia de Función , Sustitución de Aminoácidos , Filogenia , Dioxigenasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Pigmentación
2.
New Phytol ; 227(3): 914-929, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31369159

RESUMEN

The evolution of l-DOPA 4,5-dioxygenase activity, encoded by the gene DODA, was a key step in the origin of betalain biosynthesis in Caryophyllales. We previously proposed that l-DOPA 4,5-dioxygenase activity evolved via a single Caryophyllales-specific neofunctionalisation event within the DODA gene lineage. However, this neofunctionalisation event has not been confirmed and the DODA gene lineage exhibits numerous gene duplication events, whose evolutionary significance is unclear. To address this, we functionally characterised 23 distinct DODA proteins for l-DOPA 4,5-dioxygenase activity, from four betalain-pigmented and five anthocyanin-pigmented species, representing key evolutionary transitions across Caryophyllales. By mapping these functional data to an updated DODA phylogeny, we then explored the evolution of l-DOPA 4,5-dioxygenase activity. We find that low l-DOPA 4,5-dioxygenase activity is distributed across the DODA gene lineage. In this context, repeated gene duplication events within the DODA gene lineage give rise to polyphyletic occurrences of elevated l-DOPA 4,5-dioxygenase activity, accompanied by convergent shifts in key functional residues and distinct genomic patterns of micro-synteny. In the context of an updated organismal phylogeny and newly inferred pigment reconstructions, we argue that repeated convergent acquisition of elevated l-DOPA 4,5-dioxygenase activity is consistent with recurrent specialisation to betalain synthesis in Caryophyllales.


Asunto(s)
Caryophyllales , Dioxigenasas , Betalaínas , Dioxigenasas/genética , Levodopa , Filogenia , Pigmentación
3.
New Phytol ; 224(1): 71-85, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31172524

RESUMEN

Within the angiosperm order Caryophyllales, an unusual class of pigments known as betalains can replace the otherwise ubiquitous anthocyanins. In contrast to the phenylalanine-derived anthocyanins, betalains are tyrosine-derived pigments which contain the chromophore betalamic acid. The origin of betalain pigments within Caryophyllales and their mutual exclusion with anthocyanin pigments have been the subject of considerable research. In recent years, numerous discoveries, accelerated by -omic scale data, phylogenetics and synthetic biology, have shed light on the evolution of the betalain biosynthetic pathway in Caryophyllales. These advances include the elucidation of the biosynthetic steps in the betalain pathway, identification of transcriptional regulators of betalain synthesis, resolution of the phylogenetic history of key genes, and insight into a role for modulation of primary metabolism in betalain synthesis. Here we review how molecular genetics have advanced our understanding of the betalain biosynthetic pathway, and discuss the impact of phylogenetics in revealing its evolutionary history. In light of these insights, we explore our new understanding of the origin of betalains, the mutual exclusion of betalains and anthocyanins, and the homoplastic distribution of betalain pigmentation within Caryophyllales. We conclude with a speculative conceptual model for the stepwise emergence of betalain pigmentation.


Asunto(s)
Betalaínas/biosíntesis , Evolución Biológica , Caryophyllales/metabolismo , Betalaínas/química , Vías Biosintéticas , Caryophyllales/genética , Filogenia , Pigmentación/genética
4.
Food Microbiol ; 46: 92-99, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475271

RESUMEN

We present a genetic characterization of 65 isolates of Saccharomyces uvarum isolated from wineries in New Zealand, along with the complete nucleotide sequence of a single sulfite-tolerant isolate. The genome of the New Zealand isolate averaged 99.85% nucleotide identity to CBS7001, the previously sequenced strain of S. uvarum. However, three genomic segments (37-87 kb) showed 10% nucleotide divergence from CBS7001 but 99% identity to Saccharomyces eubayanus. We conclude that these three segments appear to have been introgressed from that species. The nucleotide sequence of the internal transcribed spacer (ITS) region from other New Zealand isolates were also very similar to that of CBS7001, and hybrids showed complete genetic compatibility for some strains, with tetrads giving four viable progeny that showed 2:2 segregations of marker genes. Some strains showed high tolerance to sulfite, with genetic analysis indicating linkage of this trait to the transcription factor FZF1, but not to SSU1, the sulfite efflux pump that it regulates in order to confer sulfite tolerance in Saccharomyces cerevisiae. The fermentation characteristics of selected strains of S. uvarum showed exceptionally good cold fermentation characteristics, superior to the best commercially available strains of S. cerevisiae.


Asunto(s)
Saccharomyces/genética , Saccharomyces/aislamiento & purificación , Vino/microbiología , Secuencia de Bases , Fermentación , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Técnicas de Tipificación Micológica , Nueva Zelanda , Filogenia , Saccharomyces/clasificación
5.
J Med Chem ; 63(6): 3348-3358, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32109056

RESUMEN

ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Presentación de Antígeno/efectos de los fármacos , Diterpenos de Tipo Clerodano/farmacología , Epítopos/metabolismo , Péptidos/metabolismo , Inhibidores de Proteasas/farmacología , Sitio Alostérico , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Diterpenos de Tipo Clerodano/química , Diterpenos de Tipo Clerodano/metabolismo , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Activadores de Enzimas/farmacología , Epítopos/química , Células HeLa , Humanos , Ratones , Antígenos de Histocompatibilidad Menor/química , Antígenos de Histocompatibilidad Menor/metabolismo , Péptidos/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Proteolisis/efectos de los fármacos
6.
Sci Rep ; 8(1): 17256, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467357

RESUMEN

L-Tyrosine-derived specialized metabolites perform many important functions in plants, and have valuable applications in human health and nutrition. A necessary step in the overproduction of specialised tyrosine-derived metabolites in planta is the manipulation of primary metabolism to enhance the availability of tyrosine. Here, we utilise a naturally occurring de-regulated isoform of the key enzyme, arogenate dehydrogenase, to re-engineer the interface of primary and specialised metabolism, to boost the production of tyrosine-derived pigments in a heterologous plant host. Through manipulation of tyrosine availability, we report a 7-fold increase in the production of tyrosine-derived betalain pigments, with an upper range of 855 mg·kg-1·FW, which compare favourably to many in vitro and commercial sources of betalain pigments. Since the most common plant pathway for tyrosine synthesis occurs via arogenate, the de-regulated arogenate dehydrogenase isoform is a promising route for enhanced production of tyrosine-derived pharmaceuticals in diverse plant hosts.


Asunto(s)
Beta vulgaris/crecimiento & desarrollo , Betalaínas/metabolismo , Nicotiana/crecimiento & desarrollo , Prefenato Deshidrogenasa/metabolismo , Metabolismo Basal , Beta vulgaris/genética , Beta vulgaris/metabolismo , Ingeniería Metabólica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prefenato Deshidrogenasa/genética , Isoformas de Proteínas/metabolismo , Metabolismo Secundario , Nicotiana/genética , Nicotiana/metabolismo , Tirosina/metabolismo
7.
Nat Genet ; 48(2): 159-66, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26656847

RESUMEN

Adaptations to new pollinators involve multiple floral traits, each requiring coordinated changes in multiple genes. Despite this genetic complexity, shifts in pollination syndromes have happened frequently during angiosperm evolution. Here we study the genetic basis of floral UV absorbance, a key trait for attracting nocturnal pollinators. In Petunia, mutations in a single gene, MYB-FL, explain two transitions in UV absorbance. A gain of UV absorbance in the transition from bee to moth pollination was determined by a cis-regulatory mutation, whereas a frameshift mutation caused subsequent loss of UV absorbance during the transition from moth to hummingbird pollination. The functional differences in MYB-FL provide insight into the process of speciation and clarify phylogenetic relationships between nascent species.


Asunto(s)
Flores/efectos de la radiación , Manduca/fisiología , Petunia/efectos de la radiación , Polinización , Rayos Ultravioleta , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN de Plantas , Datos de Secuencia Molecular , Petunia/genética , Petunia/fisiología , Reproducción
8.
Curr Biol ; 23(10): 873-7, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23602480

RESUMEN

Most flowering plants depend on animal vectors for pollination and seed dispersal. Differential pollinator preferences lead to premating isolation and thus reduced gene flow between interbreeding plant populations. Sets of floral traits, adapted to attract specific pollinator guilds, are called pollination syndromes. Shifts in pollination syndromes have occurred surprisingly frequently, considering that they must involve coordinated changes in multiple genes affecting multiple floral traits. Although the identification of individual genes specifying single pollination syndrome traits is in progress in many species, little is known about the genetic architecture of coadapted pollination syndrome traits and how they are embedded within the genome. Here we describe the tight genetic linkage of loci specifying five major pollination syndrome traits in the genus Petunia: visible color, UV absorption, floral scent production, pistil length, and stamen length. Comparison with other Solanaceae indicates that, in P. exserta and P. axillaris, loci specifying these floral traits have specifically become clustered into a multifunctional "speciation island". Such an arrangement promotes linkage disequilibrium and avoids the dissolution of pollination syndromes by recombination. We suggest that tight genetic linkage provides a mechanism for rapid switches between distinct pollination syndromes in response to changes in pollinator availabilities.


Asunto(s)
Genes de Plantas , Ligamiento Genético , Petunia/genética , Petunia/fisiología , Polinización , Especificidad de la Especie
9.
Front Plant Sci ; 2: 115, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22645562

RESUMEN

Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signaling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologs of the ArabidopsisMAX1 and MAX2 genes to characterize their role in petunia architecture. A single ortholog of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels change in leaves of differing age/position on the plant. Nonetheless, this gene functionally complements the Arabidopsismax2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B) was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over a development series. Alterations to the expression patterns of these genes may influence the branching growth habit of plants by changing strigolactone production and/or sensitivity. These changes could allow both subtle and dramatic changes to branching within and between species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA