Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Xenobiotica ; : 1-13, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647387

RESUMEN

Background: Monomethyl auristatin E (MMAE) has been used as a payload for several Food and Drug Administration (FDA) approved antibody-drug conjugates (ADCs). It is known that MMAE is released from the ADC following binding, internalization and proteolytic degradation in target tissues. A striking discrepancy in systemic MMAE levels has been observed across species with 50-fold higher MMAE levels in human than that in rodents when normalized by ADC dose with unknown mechanism.Hypothesis and purpose: Multiple factors could affect systemic MMAE levels such as production and elimination of unconjugated MMAE following ADC dosing. In this study, we have explored whether MMAE displays differential red blood cell (RBC) partitioning across species that may contribute to the different MMAE levels seen between human and animals.Experiments: To determine MMAE RBC partitioning, tritium labeled MMAE ([3H]-MMAE) was incubated in whole blood from mice, rats, monkeys and humans in vitro, then RBC partitioning was determined and compared across species. To test whether MMAE released from the ADC would show any difference in RBC partitioning, pinatuzumab vedotin or polatuzumab vedotin was administered to mice, rats, and monkeys. MMAE levels were measured in both blood and plasma, and the ratios of MMAE levels were calculated as blood-to-plasma ratio (in vivo RBC partitioning).Results: Our in vitro data showed that unconjugated MMAE has a species-dependent RBC partitioning with strong RBC partitioning in mouse, rat, followed by monkey blood, whereas minimal RBC partitioning was seen in human blood. Incubation of 2 nM of MMAE in mouse blood resulted in a blood-to-plasma ratio of 11.8 ± 0.291, followed by rat, monkey, and human at 2.36 ± 0.0825, 1.57 ± 0.0250, and 0.976 ± 0.0620, respectively. MMAE RBC partitioning is also concentration-dependent, with an inverse relationship between RBC partitioning and MMAE concentration (higher RBC partitioning at lower concentration). In vivo dosing of pinatuzumab vedotin in mouse displayed systemic MMAE at about a 5-fold higher blood concentration compared to plasma concentration once MMAE reached a pseudo-equilibrium, while systemic MMAE from blood and plasma concentration showed a 1.65-fold difference in rat.Implication and conclusion: These data demonstrated that MMAE has a distinct RBC partitioning across different species, which may contribute to, at least in part, to the differential in the systemic MMAE levels observed in vivo between preclinical and clinical studies. These findings highlight the importance of fully characterizing the ADME properties of both the ADC and its payload, to enable better translation from animals to human for ADC development.

2.
Breast Cancer Res Treat ; 191(2): 303-317, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34708303

RESUMEN

PURPOSE: Assessment of non-clinical safety signals relies on understanding species selectivity of antibodies. This is particularly important with antibody-drug conjugates, where it is key to determine target-dependent versus target-independent toxicity. Although it appears to be widely accepted that trastuzumab does not bind mouse or rat HER2/ErbB2/neu, numerous investigators continue to use mouse models to investigate safety signals of trastuzumab and trastuzumab emtansine (T-DM1). We, therefore, conducted a broad array of both binding and biologic studies to demonstrate selectivity of trastuzumab for human HER2 versus mouse/rat neu. METHODS: Binding of anti-neu and anti-HER2 antibodies was assessed by ELISA, FACS, IHC, Scatchard, and immunoblot methods in human, rat, and mouse cell lines. In human hepatocytes, T-DM1 uptake and catabolism were measured by LC-MS/MS; cell viability changes were determined using CellTiter-Glo. RESULTS: Our data demonstrate, using different binding methods, lack of trastuzumab binding to rat or mouse neu. Structural studies show important amino acid differences in the trastuzumab-HER2 binding interface between mouse/rat and human HER2 ECD. Substitution of these rodent amino acid residues into human HER2 abolish binding of trastuzumab. Cell viability changes, uptake, and catabolism of T-DM1 versus a DM1 non-targeted control ADC were comparable, indicating target-independent effects of the DM1-containing ADCs. Moreover, trastuzumab binding to human or mouse hepatocytes was not detected. CONCLUSIONS: These data, in total, demonstrate that trastuzumab, and by extension T-DM1, do not bind rat or mouse neu, underscoring the importance of species selection for safety studies investigating trastuzumab or trastuzumab-based therapeutics.


Asunto(s)
Neoplasias de la Mama , Maitansina , Animales , Anticuerpos Monoclonales Humanizados , Cromatografía Liquida , Femenino , Humanos , Maitansina/efectos adversos , Ratones , Ratas , Receptor ErbB-2/genética , Espectrometría de Masas en Tándem , Trastuzumab/efectos adversos
3.
Mol Ther ; 29(2): 555-570, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33038322

RESUMEN

Tremendous innovation is underway among a rapidly expanding repertoire of promising personalized immune-based treatments. Therapeutic cancer vaccines (TCVs) are attractive systemic immunotherapies that activate and expand antigen-specific CD8+ and CD4+ T cells to enhance anti-tumor immunity. Our review highlights key issues impacting TCVs in clinical practice and reports on progress in development. We review the mechanism of action, immune-monitoring, dosing strategies, combinations, obstacles, and regulation of cancer vaccines. Most trials of personalized TCVs are ongoing and represent diverse platforms with predominantly early investigations of mRNA, DNA, or peptide-based targeting strategies against neoantigens in solid tumors, with many in combination immunotherapies. Multiple delivery systems, routes of administration, and dosing strategies are used. Intravenous or intramuscular administration is common, including delivery by lipid nanoparticles. Absorption and biodistribution impact antigen uptake, expression, and presentation, affecting the strength, speed, and duration of immune response. The emerging trials illustrate the complexity of developing this class of innovative immunotherapies. Methodical testing of the multiple potential factors influencing immune responses, as well as refined quantitative methodologies to facilitate optimal dosing strategies, could help resolve uncertainty of therapeutic approaches. To increase the likelihood of success in bringing these medicines to patients, several unique development challenges must be overcome.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor , Ensayos Clínicos como Asunto , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Desarrollo de Medicamentos , Humanos , Inmunoterapia/métodos , Medicina de Precisión/métodos , Linfocitos T/inmunología
4.
Toxicol Appl Pharmacol ; 421: 115534, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33852878

RESUMEN

Monomethyl auristatin E (MMAE) is a potent anti-cancer microtubule-targeting agent (MTA) used as a payload in three approved MMAE-containing antibody drug conjugates (ADCs) and multiple ADCs in clinical development to treat different types of cancers. Unfortunately, MMAE-ADCs can induce peripheral neuropathy, a frequent adverse event leading to treatment dose reduction or discontinuation and subsequent clinical termination of many MMAE-ADCs. MMAE-ADC-induced peripheral neuropathy is attributed to non-specific uptake of the ADC in peripheral nerves and release of MMAE, disrupting microtubules (MTs) and causing neurodegeneration. However, molecular mechanisms underlying MMAE and MMAE-ADC effects on MTs remain unclear. Here, we characterized MMAE-tubulin/MT interactions in reconstituted in vitro soluble tubulin or MT systems and evaluated MMAE and vcMMAE-ADCs in cultured human MCF7 cells. MMAE bound to soluble tubulin heterodimers with a maximum stoichiometry of ~1:1, bound abundantly along the length of pre-assembled MTs and with high affinity at MT ends, introduced structural defects, suppressed MT dynamics, and reduced the kinetics and extent of MT assembly while promoting tubulin ring formation. In cells, MMAE and MMAE-ADC (via nonspecific uptake) suppressed proliferation, mitosis and MT dynamics, and disrupted the MT network. Comparing MMAE action to other MTAs supports the hypothesis that peripheral neuropathy severity is determined by the precise mechanism(s) of each individual drug-MT interaction (location of binding, affinity, effects on morphology and dynamics). This work demonstrates that MMAE binds extensively to tubulin and MTs and causes severe MT dysregulation, providing convincing evidence that MMAE-mediated inhibition of MT-dependent axonal transport leads to severe peripheral neuropathy.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Microtúbulos/efectos de los fármacos , Oligopéptidos/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Sistema Nervioso Periférico/efectos de los fármacos , Moduladores de Tubulina/toxicidad , Tubulina (Proteína)/metabolismo , Transporte Axonal/efectos de los fármacos , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Microtúbulos/metabolismo , Microtúbulos/patología , Mitosis/efectos de los fármacos , Oligopéptidos/metabolismo , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Unión Proteica , Medición de Riesgo , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/patología , Moduladores de Tubulina/metabolismo
5.
Drug Metab Dispos ; 48(12): 1247-1256, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33020064

RESUMEN

Anti-Ly6E-seco-cyclopropabenzindol-4-one dimer antibody-drug conjugate (ADC) has been reported to form an adduct with α1-microglobulin (A1M) in animal plasma, but with unknown impact on ADC PK and tissue distribution. In this study, we compared the PK and tissue distribution of anti-Ly6E ADC with unconjugated anti-Ly6E mAb in rodents and monkeys. For PK studies, animals received an intravenous administration of anti-Ly6E ADC or unconjugated anti-Ly6E mAb. Plasma samples were analyzed for total antibody (Tab) levels and A1M adduct formation. PK parameters were generated from dose-normalized plasma concentrations. Tissue distribution was determined in tumor-bearing mice after a single intravenous dosing of radiolabeled ADC or mAb. Tissue radioactivity levels were analyzed using a gamma counter. The impact of A1M adduct formation on target cell binding was assessed in an in vitro cell binding assay. The results show that ADC Tab clearance was slower than that of mAb in mice and rats but faster than mAb in monkeys. Correspondingly, the formation of A1M adduct appeared to be faster and higher in mice, followed by rats, and slowest in monkeys. Although ADC tended to show an overall lower distribution to normal tissues, it had a strikingly reduced distribution to tumors compared with mAb, likely due to A1M adduct formation interfering with target binding, as demonstrated by the in vitro cell binding assay. Together, these data 1) demonstrate that anti-Ly6E ADC that forms A1M adduct had slower systemic clearance with strikingly reduced tumor distribution and 2) highlight the importance of selecting an appropriate linker-drug for successful ADC development. SIGNIFICANCE STATEMENT: Anti-lymphocyte antigen 6 complex, locus E, ADC with seco-cyclopropabenzindol-4-one-dimer payload formed adduct with A1M, which led to a decrease in systemic clearance but also attenuated tumor distribution. These findings demonstrate the importance of selecting an appropriate linker-drug for ADC development and also highlight the value of a mechanistic understanding of ADC biotransformation, which could provide insight into ADC molecule design, optimization, and selection.


Asunto(s)
alfa-Globulinas/metabolismo , Antineoplásicos Inmunológicos/farmacocinética , Inmunoconjugados/farmacocinética , Neoplasias/tratamiento farmacológico , Animales , Antígenos de Superficie , Antineoplásicos Inmunológicos/administración & dosificación , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/antagonistas & inhibidores , Humanos , Inmunoconjugados/administración & dosificación , Macaca fascicularis , Tasa de Depuración Metabólica , Ratones , Neoplasias/patología , Ratas , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Drug Metab Dispos ; 48(11): 1161-1168, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839277

RESUMEN

Invasive Staphylococcus aureus infection is a leading cause of infectious disease-related deaths because S. aureus survives within host phagocytic cells, from which the bacteria are not adequately eliminated using current antibiotic treatments. Anti-S. aureus THIOMAB antibody-antibiotic conjugate (TAC), an anti-S. aureus antibody conjugated with antibiotic payload dmDNA31, was designed to deliver antibiotics into phagocytes, thereby killing intracellular S. aureus Herein, we present the distribution, metabolism/catabolism, and elimination properties for this modality. The tissue distribution of TAC and the release and elimination of its payload dmDNA31 were characterized in rats using multiple approaches. Intravenous injection of unconjugated [14C]dmDNA31 to rats resulted in a rapid clearance in both systemic circulation and tissues, with biliary secretion as the major route of elimination. Six major metabolites were identified. When [14C]dmDNA31 was conjugated to an antibody as TAC and administered to rat intravenously, a sustained exposure was observed in both systemic circulation and tissues. The dmDNA31 in blood and tissues mainly remained in conjugated form after administering TAC, although minimal deconjugation of dmDNA31 from TAC was also observed. Several TAC catabolites were identified, which were mainly eliminated through the biliary-fecal route, with dmDNA31 and deacetylated dmDNA31 as the most abundant catabolites. In summary, these studies provide a comprehensive characterization of the distribution, metabolism/catabolism, and elimination properties of TAC. These data fully support further clinical development of TAC for the invasive and difficult-to-treat S. aureus infection. SIGNIFICANCE STATEMENT: The present studies provide a comprehensive investigation of the absorption, distribution, metabolism/catabolism, and elimination of the first antibody-antibiotic conjugate developed for the treatment of an infectious disease. Although many antibody-drug conjugates are in development for various disease indications, only a limited amount of absorption, distribution, metabolism/catabolism, and elimination information is available in the literature. This study demonstrates the use of radiolabeling technology to delineate the absorption, distribution, metabolism/catabolism, and elimination properties of a complex modality and help address the key questions related to clinical pharmacological studies.


Asunto(s)
Antibacterianos/farmacocinética , Anticuerpos Antibacterianos/farmacología , Inmunoconjugados/farmacocinética , Animales , Antibacterianos/administración & dosificación , Femenino , Humanos , Inmunoconjugados/administración & dosificación , Inyecciones Intravenosas , Masculino , Modelos Animales , Ratas , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Distribución Tisular
7.
Regul Toxicol Pharmacol ; 82: 1-13, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27773754

RESUMEN

Antibody drug conjugates (ADC) consist of potent cytotoxic drugs conjugated to antibodies via chemical linkers, which enables specific targeting of tumor cells while reducing systemic exposure to the cytotoxic drug and improving the therapeutic window. The valine citrulline monomethyl auristatin E (vcMMAE, conventional linker-drug) ADC platform has shown promising clinical activity in several cancers, but peripheral neuropathy (PN) is a frequent adverse event leading to treatment discontinuation and dose reduction. This was not predicted based on nonclinical toxicology studies in monkeys or rats treated with vcMMAE ADCs. We evaluated four hypotheses for the lack of translatability of PN with vcMMAE ADCs: 1) species differences in exposure; 2) insensitivity of animal models; 3) species differences in target biology and other vcMMAE ADC properties in peripheral nerves and 4) increased susceptibility of patient population. The result of this hypothesis-based approach identified opportunities to improve the predictivity of PN in our animal models by increasing duration of exposure and adding an expanded neurohistopathology assessment of peripheral nerves. The utility of a predictive animal model would be to provide possible mitigation strategies in the clinic with vcMMAE ADCs and help to screen the next generation microtubule inhibitor (MTI) ADCs for reduced PN.


Asunto(s)
Anticuerpos/toxicidad , Antineoplásicos/toxicidad , Inmunoconjugados/toxicidad , Oligopéptidos/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Pruebas de Toxicidad/métodos , Investigación Biomédica Traslacional/métodos , Moduladores de Tubulina/toxicidad , Animales , Anticuerpos/química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Interacciones Farmacológicas , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Modelos Animales , Oligopéptidos/química , Oligopéptidos/farmacocinética , Farmacogenética , Medición de Riesgo , Especificidad de la Especie , Factores de Tiempo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacocinética
8.
Adv Drug Deliv Rev ; 207: 115193, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311111

RESUMEN

The favorable benefit-risk profile of polatuzumab vedotin, as demonstrated in a pivotal Phase Ib/II randomized study (GO29365; NCT02257567), coupled with the need for effective therapies in relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL), prompted the need to accelerate polatuzumab vedotin development. An integrated, fit-for-purpose clinical pharmacology package was designed to support regulatory approval. To address key clinical pharmacology questions without dedicated clinical pharmacology studies, we leveraged non-clinical and clinical data for polatuzumab vedotin, published clinical data for brentuximab vedotin, a similar antibody-drug conjugate, and physiologically based pharmacokinetic and population pharmacokinetic modeling approaches. We review strategies and model-informed outcomes that contributed to regulatory approval of polatuzumab vedotin plus bendamustine and rituximab in R/R DLBCL. These strategies made polatuzumab vedotin available to patients earlier than previously possible; depending on the strength of available data and the regulatory/competitive environment, they may also prove useful in accelerating the development of other agents.


Asunto(s)
Inmunoconjugados , Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Farmacología Clínica , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/patología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico
9.
J Pharm Sci ; 112(11): 2910-2920, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37429356

RESUMEN

MTBT1466A is a high-affinity TGFß3-specific humanized IgG1 monoclonal antibody with reduced Fc effector function, currently under investigation in clinical trials as a potential anti-fibrotic therapy. Here, we characterized the pharmacokinetics (PK) and pharmacodynamics (PD) of MTBT1466A in mice and monkeys and predicted the PK/PD of MTBT1466A in humans to guide the selection of the first-in-human (FIH) starting dose. MTBT1466A demonstrated a typical IgG1-like biphasic PK profile in monkeys, and the predicted human clearance of 2.69 mL/day/kg and t1/2 of 20.4 days are consistent with those expected for a human IgG1 antibody. In a mouse model of bleomycin-induced lung fibrosis, changes in expression of TGFß3-related genes, serpine1, fibronectin-1, and collagen 1A1 were used as PD biomarkers to determine the minimum pharmacologically active dose of 1 mg/kg. Unlike in the fibrosis mouse model, evidence of target engagement in healthy monkeys was only observed at higher doses. Using a PKPD-guided approach, the recommended FIH dose of 50 mg, IV, provided exposures that were shown to be safe and well tolerated in healthy volunteers. MTBT1466A PK in healthy volunteers was predicted reasonably well using a PK model with allometric scaling of PK parameters from monkey data. Taken together, this work provides insights into the PK/PD behavior of MTBT1466A in preclinical species, and supports the translatability of the preclinical data into the clinic.

10.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35414872

RESUMEN

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

11.
Bioconjug Chem ; 22(10): 1994-2004, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-21913715

RESUMEN

Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ∼45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Antígenos de Neoplasias/inmunología , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Oligopéptidos/química , Oligopéptidos/farmacocinética , Oxidorreductasas/inmunología , Animales , Anticuerpos Monoclonales/sangre , Disulfuros/química , Humanos , Inmunoconjugados/sangre , Masculino , Modelos Moleculares , Oligopéptidos/sangre , Ratas , Ratas Sprague-Dawley , Distribución Tisular
12.
J Clin Med ; 10(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806916

RESUMEN

Polatuzumab vedotin (or POLIVY®), an antibody-drug conjugate (ADC) composed of a polatuzumab monoclonal antibody conjugated to monomethyl auristatin E (MMAE) via a cleavable dipeptide linker, has been approved by the United States Food and Drug Administration (FDA) for the treatment of diffuse large B-cell lymphoma (DLBCL). To support the clinical development of polatuzumab vedotin, we characterized the distribution, catabolism/metabolism, and elimination properties of polatuzumab vedotin and its unconjugated MMAE payload in Sprague Dawley rats. Several radiolabeled probes were developed to track the fate of different components of the ADC, with 125I and 111In used to label the antibody component and 3H to label the MMAE payload of the ADC. Following a single intravenous administration of the radiolabeled probes into normal or bile-duct cannulated rats, blood, various tissues, and excreta samples were collected over 7-14 days post-dose and analyzed for radioactivity and to characterize the metabolites/catabolites. The plasma radioactivity of polatuzumab vedotin showed a biphasic elimination profile similar to that of unconjugated polatuzumab but different from unconjugated radiolabeled MMAE, which had a fast clearance. The vast majority of the radiolabeled MMAE in plasma remained associated with antibodies, with a minor fraction as free MMAE and MMAE-containing catabolites. Similar to unconjugated mAb, polatuzumab vedotin showed a nonspecific distribution to multiple highly perfused organs, including the lungs, heart, liver, spleen, and kidneys, where the ADC underwent catabolism to release MMAE and other MMAE-containing catabolites. Both polatuzumab vedotin and unconjugated MMAE were mainly eliminated through the biliary fecal route (>90%) and a small fraction (<10%) was eliminated through renal excretion in the form of catabolites/metabolites, among which, MMAE was identified as the major species, along with several other minor species. These studies provided significant insight into ADC's absorption, distribution, metabolism, and elimination (ADME) properties, which supports the clinical development of POLIVY.

13.
Drug Metab Dispos ; 38(12): 2309-19, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20823292

RESUMEN

3A5 is a novel antibody that binds repeated epitopes within CA125, an ovarian tumor antigen that is shed into the circulation. Binding to shed antigen may limit the effectiveness of therapeutic antibodies because of unproductive immune complex (IC) formation and/or altered antibody distribution. To evaluate this possibility, we characterized the impact of shed CA125 on the in vivo distribution of 3A5. In vitro, 3A5 and CA125 were found to form ICs in a concentration-dependent manner. This phenomenon was then evaluated in vivo using quantitative whole-body autoradiography to assess the tissue distribution of (125)I-3A5 in an orthotopic OVCAR-3 tumor mouse model at different stages of tumor burden. Low doses of 3A5 (75 µg/kg) and pathophysiological levels of shed CA125 led to the formation of ICs in vivo that were rapidly distributed to the liver. Under these conditions, increased clearance of 3A5 from normal tissues was observed in mice bearing CA125-expressing tumors. Of importance, despite IC formation, 3A5 uptake by tumors was sustained over time. At a therapeutically relevant dose of 3A5 (3.5 mg/kg), IC formation was undetectable and distribution to normal tissues followed that of blood. In contrast, increased levels of radioactivity were observed in the tumors. These data demonstrate that CA125 and 3A5 do form ICs in vivo and that the liver is involved in their uptake. However, at therapeutic doses of 3A5 and clinically relevant CA125 levels, IC formation consumes only a minor fraction of 3A5, and tumor targeting seems to be unaffected.


Asunto(s)
Anticuerpos/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Antígeno Ca-125/inmunología , Neoplasias Ováricas/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Distribución Tisular
14.
Mol Cancer Ther ; 8(1): 75-82, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19139115

RESUMEN

Modifying the capecitabine dosing schedule from 14 days on, 7 days off (14/7) to 7 days on, 7 days off (7/7) may enable higher doses and improved antitumor efficacy in colorectal cancer xenografts. Capecitabine 14/7 (267 or 400 mg/kg) and 7/7 (467 or 700 mg/kg) schedules in doublet and triplet combinations with optimally dosed bevacizumab (5 mg/kg) and oxaliplatin (6.7 mg/kg) were studied in female athymic nude mice bearing HT29 colorectal xenografts. Additional studies of suboptimally dosed bevacizumab (2.5 mg/kg) and capecitabine 7/7 (360 mg/kg) were done in a similar Colo205 tumor xenograft model. Monotherapy and combination regimens were administered to groups of 10 animals and compared with vehicle controls. In the HT29 model, tumor growth inhibition and increase in life span (ILS) were significantly greater with capecitabine 7/7 than with 14/7 (P<0.05). The additional benefit of capecitabine 7/7 versus 14/7 was biologically significant according to National Cancer Institute criteria (>25% ILS). Adding bevacizumab to capecitabine 7/7 resulted in significantly greater survival relative to either agent alone (P<0.0001). When oxaliplatin was added, efficacy was significantly better with the triplet combination including capecitabine 7/7 (tumor growth inhibition>100% and ILS 234%) compared with 14/7 (95% and 81%, respectively). In the Colo205 model, combination therapy with capecitabine 7/7 plus bevacizumab resulted in significantly greater survival relative to either agent alone (P<0.0001). In conclusion, in athymic nude mice bearing moderately thymidine phosphorylase-expressing HT29 or Colo205 colorectal xenografts, a capecitabine 7/7 schedule permits increased drug delivery compared with traditional 14/7 regimens, greatly improving monotherapy activity without major toxicity.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Desoxicitidina/análogos & derivados , Fluorouracilo/análogos & derivados , Inmunoterapia , Compuestos Organoplatinos/uso terapéutico , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales Humanizados , Antineoplásicos/inmunología , Bevacizumab , Capecitabina , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Desoxicitidina/uso terapéutico , Tolerancia a Medicamentos , Fluorouracilo/uso terapéutico , Humanos , Ratones , Ratones Desnudos , Oxaliplatino , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Pharmacol Res Perspect ; 8(2): e00573, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32125783

RESUMEN

A phage-derived human monoclonal antibody against VEGF-C was developed as a potential anti-tumor therapeutic and exhibited fast clearance in preclinical species, with notably faster clearance in serum than in plasma. The purpose of this work was to understand the factors contributing to its fast clearance. In vitro incubations in animal and human blood, plasma, and serum were conducted with radiolabeled anti-VEGF-C to determine potential protein and cell-based interactions with the antibody as well as any matrix-dependent recovery dependent upon the matrix. A tissue distribution study was conducted in mice with and without heparin infusion in order to identify a tissue sink and determine whether heparin could affect antibody recovery from serum and/or plasma. Incubation of radiolabeled anti-VEGF-C in human and animal blood, plasma, or serum revealed that the antibody formed a complex with an endogenous protein, likely VEGF-C. This complex was trapped within the blood clot during serum preparation from blood, but not within the blood cell pellet during plasma preparation. Low level heparin infusion in mice slowed down clot formation during serum preparation and allowed for better recovery of the radiolabeled antibody in serum. No tissue sink was found in mice. Thus, during this characterization, we determined that the blood sampling matrix greatly impacted the amount of antibody recovered in the samples, therefore, altering its derived pharmacokinetic parameters. Target biology should be considered when selecting appropriate sampling matrices for PK analysis.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Factor C de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/sangre , Artefactos , Coagulación Sanguínea , Femenino , Humanos , Macaca fascicularis , Ratones Desnudos , Ratas Sprague-Dawley , Distribución Tisular , Factor C de Crecimiento Endotelial Vascular/inmunología
16.
Mol Cancer Ther ; 17(7): 1441-1453, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29695635

RESUMEN

The receptor tyrosine kinase HER2 is overexpressed in approximately 20% of breast cancer, and its amplification is associated with reduced survival. Trastuzumab emtansine (Kadcyla, T-DM1), an antibody-drug conjugate that is comprised of trastuzumab covalently linked to the antimitotic agent DM1 through a stable linker, was designed to selectively deliver DM1 to HER2-overexpressing tumor cells. T-DM1 is approved for the treatment of patients with HER2-positive metastatic breast cancer following progression on trastuzumab and a taxane. Despite the improvement in clinical outcome, many patients who initially respond to T-DM1 treatment eventually develop progressive disease. The mechanisms that contribute to T-DM1 resistance are not fully understood. To this end, we developed T-DM1-resistant in vitro models to examine the mechanisms of acquired T-DM1 resistance. We demonstrate that decreased HER2 and upregulation of MDR1 contribute to T-DM1 resistance in KPL-4 T-DM1-resistant cells. In contrast, both loss of SLC46A3 and PTEN deficiency play a role in conferring resistance in BT-474M1 T-DM1-resistant cells. Our data suggest that these two cell lines acquire resistance through distinct mechanisms. Furthermore, we show that the KPL-4 T-DM1 resistance can be overcome by treatment with an inhibitor of MDR1, whereas a PI3K inhibitor can rescue PTEN loss-induced resistance in T-DM1-resistant BT-474M1 cells. Our results provide a rationale for developing therapeutic strategies to enhance T-DM1 clinical efficacy by combining T-DM1 and other inhibitors that target signaling transduction or resistance pathways. Mol Cancer Ther; 17(7); 1441-53. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Receptor ErbB-2/genética , Trastuzumab/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Hidrocarburos Aromáticos con Puentes/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoconjugados/farmacología , Ratones , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/efectos de los fármacos , Taxoides/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
MAbs ; 10(8): 1312-1321, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30183491

RESUMEN

Few treatment options are available for acute myeloid leukemia (AML) patients. DCLL9718A is an antibody-drug conjugate that targets C-type lectin-like molecule-1 (CLL-1). This receptor is prevalent on monocytes, neutrophils, and AML blast cells, and unlike CD33, is not expressed on hematopoietic stem cells, thus providing possible hematopoietic recovery. DCLL9718A comprises an anti-CLL-1 IgG1 antibody (MCLL0517A) linked to a pyrrolobenzodiazepine (PBD) dimer payload, via a cleavable disulfide-labile linker. Here, we characterize the in vitro and in vivo stability, the pharmacokinetics (PK) and pharmacodynamics (PD) of DCLL9718A and MCLL0517A in rodents and cynomolgus monkeys. Three key PK analytes were measured in these studies: total antibody, antibody-conjugated PBD dimer and unconjugated PBD dimer. In vitro, DCLL9718A, was stable with most (> 80%) of the PBD dimer payload remaining conjugated to the antibody over 96 hours. This was recapitulated in vivo with antibody-conjugated PBD dimer clearance estimates similar to DCLL9718A total antibody clearance. Both DCLL9718A and MCLL0517A showed linear PK in the non-binding rodent species, and non-linear PK in cynomolgus monkeys, a binding species. The PK data indicated minimal impact of conjugation on the disposition of DCLL9718A total antibody. Finally, in cynomolgus monkey, MCLL0517A showed target engagement at all doses tested (0.5 and 20 mg/kg) as measured by receptor occupancy, and DCLL9718A (at doses of 0.05, 0.1 and 0.2 mg/kg) showed strong PD activity as evidenced by notable reduction in monocytes and neutrophils.


Asunto(s)
Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/metabolismo , Enfermedad Aguda , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Área Bajo la Curva , Benzodiazepinas/inmunología , Benzodiazepinas/uso terapéutico , Humanos , Inmunoconjugados/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/uso terapéutico , Lectinas Tipo C/inmunología , Leucemia Mieloide/sangre , Macaca fascicularis , Tasa de Depuración Metabólica , Ratones , Pirroles/inmunología , Pirroles/uso terapéutico , Ratas , Receptores Mitogénicos/inmunología , Especificidad de la Especie
18.
Drug Metab Lett ; 9(2): 119-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26031461

RESUMEN

DM1, a derivative of maytansine, is the cytotoxic component of the antibody-drug conjugate trastuzumab emtansine (T-DM1). Understanding the disposition and metabolism of DM1 would help to assess (1) any tissue-specific distribution and risk for potential drug-drug interactions and (2) the need for special patient population studies. To this end, the current study determined the disposition and metabolism of DM1 following single intravenous administration of [(3)H]-DM1 in Sprague Dawley rats. Blood, tissues, urine, bile, and feces were collected up to 5 days after dose administration and analyzed for total radioactivity and metabolites. Results showed that radioactivity cleared rapidly from the blood and quickly distributed to the lungs, liver, kidneys, spleen, heart, gastrointestinal tract, adrenal glands, and other tissues without significant accumulation or persistence. The majority of dosed radioactivity was recovered in feces (~100% of the injected dose over 5 days) with biliary elimination being the predominant route (~46% of the injected dose over 3 days). Excretion in urine was minimal (~5% of the injected dose over 5 days). Mass balance was achieved over 5 days. An analysis of bile samples revealed a small fraction of intact DM1 and a predominance of DM1 metabolites formed through oxidation, hydrolysis, S-methylation, and glutathione and its related conjugates. Collectively, these data demonstrate that DM1 is extensively distributed and quickly cleared from blood, and undergoes extensive metabolism to form multiple metabolites, which are mainly eliminated through the hepatic-biliary route, suggesting that hepatic function (but not renal function) plays an important role in DM1 elimination.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Antineoplásicos/farmacocinética , Hígado/metabolismo , Maitansina/análogos & derivados , Ado-Trastuzumab Emtansina , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/sangre , Antineoplásicos/administración & dosificación , Antineoplásicos/sangre , Bilis/metabolismo , Biotransformación , Heces/química , Femenino , Glutatión/metabolismo , Eliminación Hepatobiliar , Hidrólisis , Inyecciones Intravenosas , Maitansina/administración & dosificación , Maitansina/sangre , Maitansina/farmacocinética , Metilación , Estructura Molecular , Oxidación-Reducción , Ratas Sprague-Dawley , Eliminación Renal , Distribución Tisular , Trastuzumab
19.
Bioanalysis ; 7(13): 1583-604, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26226309

RESUMEN

The in vivo stability and catabolism of antibody-drug conjugates (ADCs) directly impact their PK, efficacy and safety, and metabolites of the cytotoxic or small molecule drug component of an ADC can further complicate these factors. This perspective highlights the importance of understanding ADC catabolism and the associated bioanalytical challenges. We evaluated different bioanalytical approaches to qualitatively and quantitatively characterize ADC catabolites. Here we review and discuss the rationale and experimental strategies used to design bioanalytical assays for characterization of ADC catabolism and supporting ADME studies during ADC clinical development. This review covers both large and small molecule approaches, and uses examples from Kadcyla® (T-DM1) and a THIOMAB™ antibody-drug conjugate to illustrate the process.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunoconjugados/inmunología , Bioensayo , Humanos , Metabolismo
20.
Clin Pharmacokinet ; 54(1): 81-93, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25223698

RESUMEN

BACKGROUND AND OBJECTIVES: Monomethyl auristatin E (MMAE, a cytotoxic agent), upon releasing from valine-citrulline-MMAE (vc-MMAE) antibody-drug conjugates (ADCs), is expected to behave like small molecules. Therefore, evaluating the drug-drug interaction (DDI) potential associated with MMAE is important in the clinical development of ADCs. The objective of this work was to build a physiologically based pharmacokinetic (PBPK) model to assess MMAE-drug interactions for vc-MMAE ADCs. METHODS: A PBPK model linking antibody-conjugated MMAE (acMMAE) to its catabolite unconjugated MMAE associated with vc-MMAE ADCs was developed using a mixed 'bottom-up' and 'top-down' approach. The model was developed using in silico and in vitro data and in vivo pharmacokinetic data from anti-CD22-vc-MMAE ADC. Subsequently, the model was validated using clinical pharmacokinetic data from another vc-MMAE ADC, brentuximab vedotin. Finally, the verified model was used to simulate the results of clinical DDI studies between brentuximab vedotin and midazolam, ketoconazole, and rifampicin. RESULTS: The pharmacokinetic profile of acMMAE and unconjugated MMAE following administration of anti-CD22-vc-MMAE was well described by simulations using the developed PBPK model. The model's performance in predicting unconjugated MMAE pharmacokinetics was verified by successful simulation of the pharmacokinetic profile following brentuximab vedotin administration. The model simulated DDIs, expressed as area under the concentration-time curve (AUC) and maximum concentration (C max) ratios, were well within the two-fold of the observed data from clinical DDI studies. CONCLUSIONS: This work is the first demonstration of the use of PBPK modelling to predict MMAE-based DDI potential. The described model can be extended to assess the DDI potential of other vc-MMAE ADCs.


Asunto(s)
Inmunoconjugados/farmacocinética , Modelos Biológicos , Oligopéptidos/farmacocinética , Brentuximab Vedotina , Simulación por Computador , Interacciones Farmacológicas , Humanos , Inmunoconjugados/farmacología , Cetoconazol/farmacocinética , Cetoconazol/farmacología , Midazolam/farmacocinética , Midazolam/farmacología , Oligopéptidos/farmacología , Rifampin/farmacocinética , Rifampin/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA