Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Sci ; 31(1): 9, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233833

RESUMEN

Extracellular vesicles (EVs) are tiny, lipid membrane-bound structures that are released by most cells. They play a vital role in facilitating intercellular communication by delivering bioactive cargoes to recipient cells and triggering cellular as well as biological responses. EVs have enormous potential for therapeutic applications as native or engineered exosomes. Native EVs are naturally released by cells without undergoing any modifications to either the exosomes or the cells that secrete them. In contrast, engineered EVs have been deliberately modified post-secretion or through genetic engineering of the secreting cells to alter their composition. Here we propose that engineered EVs displaying pathogen proteins could serve as promising alternatives to lipid nanoparticle (LNP)-mRNA vaccines. By leveraging their unique characteristics, these engineered EVs have the potential to overcome certain limitations associated with LNP-mRNA vaccines.


Asunto(s)
Exosomas , Vesículas Extracelulares , Células Madre Mesenquimatosas , Vacunas , Vacunas de ARNm , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Exosomas/genética , Vacunas/genética
2.
Virol J ; 20(1): 10, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650505

RESUMEN

BACKGROUND: To investigate the mechanism of RNA silencing suppression, the genetic transformation of viral suppressors of RNA silencing (VSRs) in Arabidopsis integrates ectopic VSR expression at steady state, which overcomes the VSR variations caused by different virus infections or limitations of host range. Moreover, identifying the insertion of the transgenic VSR gene is necessary to establish a model transgenic plant for the functional study of VSR. METHODS: Developing an endogenous AGO1-based in vitro RNA-inducing silencing complex (RISC) assay prompts further investigation into VSR-mediated suppression. Three P1/HC-Pro plants from turnip mosaic virus (TuMV) (P1/HC-ProTu), zucchini yellow mosaic virus (ZYMV) (P1/HC-ProZy), and tobacco etch virus (TEV) (P1/HC-ProTe) were identified by T-DNA Finder and used as materials for investigations of the RISC cleavage efficiency. RESULTS: Our results indicated that the P1/HC-ProTu plant has slightly lower RISC activity than P1/HC-ProZy plants. In addition, the phenomena are consistent with those observed in TuMV-infected Arabidopsis plants, which implies that HC-ProTu could directly interfere with RISC activity. CONCLUSIONS: In this study, we demonstrated the application of various plant materials in an in vitro RISC assay of VSR-mediated RNA silencing suppression.


Asunto(s)
Arabidopsis , Potyvirus , Interferencia de ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Potyvirus/genética , Nicotiana , Enfermedades de las Plantas
3.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163305

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide and a longstanding critical challenge for public health. Screening has been suggested to effectively reduce both the incidence and mortality of CRC. However, the drawback of the current screening modalities, both stool-based tests and colonoscopies, is limited screening adherence, which reduces the effectiveness of CRC screening. Blood tests are more acceptable than stool tests or colonoscopy as a first-line screening approach. Therefore, identifying blood biomarkers for detecting CRC and its precancerous neoplasms is urgently needed to fulfill the unmet clinical need. Currently, many kinds of blood contents, such as circulating tumor cells, circulating tumor nucleic acids, and extracellular vesicles, have been investigated as biomarkers for CRC detection. Among these, small extracellular vesicles (sEVs) have been demonstrated to detect CRC effectively in recent reports. sEVs enable intercellular shuttling-for instance, trafficking between recipient cancer cells and stromal cells-which can affect tumor initiation, proliferation, angiogenesis, immune regulation; metastasis, the cancer-specific molecules, such as proteins, microRNAs, long noncoding RNAs, and circular RNAs, loaded into cancer-derived sEVs may serve as biomarkers for the detection of cancers, including CRC. Indeed, accumulating evidence has shown that nucleic acids and proteins contained in CRC-derived sEVs are effective as blood biomarkers for CRC detection. However, investigations of the performance of sEVs for diagnosing CRC in clinical trials remains limited. Thus, the effectiveness of sEV biomarkers for diagnosing CRC needs further validation in clinical trials.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/patología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Biomarcadores de Tumor/metabolismo , Detección Precoz del Cáncer/métodos , Humanos , Tamizaje Masivo
4.
Nature ; 527(7578): 329-35, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26524530

RESUMEN

Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6ß4 and α6ß1 were associated with lung metastasis, while exosomal integrin αvß5 was linked to liver metastasis. Targeting the integrins α6ß4 and αvß5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.


Asunto(s)
Encéfalo/metabolismo , Exosomas/metabolismo , Integrinas/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Tropismo , Animales , Biomarcadores/metabolismo , Encéfalo/citología , Línea Celular Tumoral , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Genes src , Humanos , Integrina alfa6beta1/metabolismo , Integrina alfa6beta4/antagonistas & inhibidores , Integrina alfa6beta4/metabolismo , Cadenas beta de Integrinas/metabolismo , Integrina beta4/metabolismo , Integrinas/antagonistas & inhibidores , Macrófagos del Hígado/citología , Macrófagos del Hígado/metabolismo , Hígado/citología , Pulmón/citología , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Fosforilación , Receptores de Vitronectina/antagonistas & inhibidores , Receptores de Vitronectina/metabolismo , Proteínas S100/genética
5.
Plant Dis ; 105(2): 425-443, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32720884

RESUMEN

Camellia sinensis (L.) O. Kuntze, commonly known as tea, is widely cultivated around the world in tropical and subtropical areas. Tea is mainly manufactured using young shoots of tea plants. Therefore, it is essential to control foliar diseases. Gray blight disease is caused by pestalotiopsis-like taxa and is known as one of the most destructive tea diseases. Although several studies have provided the groundwork for the fungal diseases associated with C. sinensis in Taiwan, gray blight disease has not been characterized based on diversity, molecular systematics, or pathogenicity. The goal of this study was to identify and characterize the causative agents of tea gray blight disease. A total of 98 pestalotiopsis-like isolates associated with symptomatic leaves of C. sinensis from major tea fields in Taiwan were investigated. Based on phylogenies of single and concatenated DNA sequences (internal transcribed spacer, ß-tubulin, translation elongation factor 1-α) together with morphology, we resolved most of the pestalotiopsis-like species in this study. The study revealed seven well-classified taxa and seven tentative clades in three genera: Pestalotiopsis, Pseudopestalotiopsis, and Neopestalotiopsis. One novel species, Pseudopestalotiopsis annellata, was introduced. Five new records, Pseudopestalotiopsis chinensis, Pseudopestalotiopsis camelliae-sinensis, Pestalotiopsis camelliae, Pestalotiopsis yanglingensis, and Pestalotiopsis trachicarpicola, were introduced for the first time in Taiwan. Pseudopestalotiopsis chinensis was the taxon most frequently isolated from C. sinensis in this study. Furthermore, results of pathogenicity assessments exhibited that, with wound inoculation, all assayed isolates in this study were pathogenic on tea leaves. Pseudopestalotiopsis chinensis and Pseudopestalotiopsis camelliae-sinensis were identified as the major pathogens associated with gray blight disease of tea in Taiwan. To our knowledge, this is the first study of the diversity, pathogenicity, and characterization of pestalotiopsis-like fungi causing tea gray blight disease in Taiwan.


Asunto(s)
Pestalotiopsis , Enfermedades de las Plantas , Ascomicetos , Taiwán , , Virulencia
6.
Rapid Commun Mass Spectrom ; 34 Suppl 1: e8549, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31411772

RESUMEN

RATIONALE: Natural products have been great sources for drug discovery. However, the structures of natural products are diverse and difficult to elucidate. Cordyceps militaris is a parasitic fungus which usually grows on host insects. The metabolites of C. militaris have been reported to act as chemotherapeutic agents. In this study, we aimed for the structural elucidation of specialized metabolites derived from C. militaris, and the metabolic impact in leukemia cells. METHODS: We describe a liquid chromatography data-dependent mass spectrometric platform combining tandem mass analysis and molecular networking. Leukemia cells treated with C. militaris extract and control groups were visualized in terms of their metabolic profiles using Global Natural Product Social (GNPS) molecular networking. By this method, we were able to elucidate the structures of metabolites from medicinal fungus extracts and cancer cells and then to recognize their changes in a semi-quantitative manner. RESULTS: Using C. militaris and leukemia cells as examples, we found that approximately 100 new ion species were present in the treated leukemia cells, suggesting a highly altered metabolic profile. Specifically, based on the tandem mass spectral similarity, we proposed that cordycepin, a key fungus-derived therapeutic agent known for its antitumor activity, was transformed into its methylthio form in leukemia cells. CONCLUSIONS: The platform described provides an ability to investigate complex molecular interactions of natural products in mammalian cells. By incorporating tandem mass spectrometry and molecular networking, we were able to reveal the chemical modification of crude bioactive compounds, for example potential bioactive compounds which might be modified from cordycepin. We envision that such a mass spectrometry (MS)-based workflow, combined with other metabolomics platforms, would enable much wider applicability to cell biology and be of great potential to pharmacological study as well as drug discovery.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Cordyceps/química , Leucemia/tratamiento farmacológico , Metaboloma/efectos de los fármacos , Antineoplásicos/química , Productos Biológicos/química , Línea Celular Tumoral , Descubrimiento de Drogas , Humanos , Leucemia/metabolismo , Espectrometría de Masas en Tándem
7.
Anal Chem ; 91(18): 11905-11915, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31408322

RESUMEN

Cellular lipidome is highly regulated through lipogenesis, rendering diverse double-bond positional isomers (C═C isomer) of a given unsaturated lipid species. In recent years, there are increasing reports indicating the physiological roles of C═C isomer compositions associated with diseases, while the biochemistry has not been broadly investigated due to the challenge in characterizing lipid isomers inherent to conventional mass spectrometry-based lipidomics. To address this challenge, we reported a universal, user-friendly, derivatization-based strategy, MELDI (mCPBA Epoxidation for Lipid Double-bond Identification), which enables both large-scale identification and spatial mapping of biological C═C isomers using commercial mass spectrometers without any instrument modification. With the developed liquid-chromatography mass spectrometry (LC-MS) lipidomics workflow, we elucidated more than 100 isomers among monounsaturated and polyunsaturated fatty acids and glycerophospholipids in human serum, where uncommon isomers of low abundance were quantified for the first time. The capability of MELDI-LC-MS in lipidome analysis was further demonstrated using the differentiated 3T3-L1 adipocytes, providing an insight into the cellular lipid reprogramming upon stearoyl-coenzyme A desaturase 1 (SCD1) inhibition. Finally, we highlighted the versatility of MELDI coupled with ambient mass spectrometry imaging to spatially resolve cancer-associated alteration of lipid isomers in a metastatic mouse tissue section. Our results suggested that MELDI will contribute to current lipidomics pipelines with a deeper level of structural information, allowing us to investigate the underlying lipid biochemistry.


Asunto(s)
Glicerofosfolípidos/sangre , Lipidómica , Imagen Molecular , Células 3T3-L1 , Animales , Cromatografía Liquida , Ácidos Grasos/sangre , Humanos , Isomerismo , Espectrometría de Masas , Ratones
8.
J Biomed Sci ; 26(1): 35, 2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31078138

RESUMEN

Extracellular vesicle (EV)-mediated intercellular communication acts as a critical culprit in cancer development. The selective packaging of oncogenic molecules renders tumor-derived EVs capable of altering the tumor microenvironment and thereby modulating cancer developments that may contribute to drug resistance and cancer recurrence. Moreover, the molecular and functional characteristics of cancer through its development and posttreatment evolve over time. Tumor-derived EVs are profoundly involved in this process and can, therefore, provide valuable real-time information to reflect dynamic changes occurring within the body. Because they bear unique molecular profiles or signatures, tumor-derived EVs have been highlighted as valuable diagnostic and predictive biomarkers as well as novel therapeutic targets. In addition, the use of an advanced EV-based drug delivery system for cancer therapeutics has recently been emphasized in both basic and clinical studies. In this review, we highlight comprehensive aspects of tumor-derived EVs in oncogenic processes and their potential clinical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/fisiología , Neoplasias/terapia , Oncogenes/fisiología , Microambiente Tumoral , Comunicación Celular/fisiología , Humanos
9.
Cancer Sci ; 109(8): 2364-2374, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29908100

RESUMEN

Exosomes participate in cancer progression and metastasis by transferring bioactive molecules between cancer and various cells in the local and distant microenvironments. Such intercellular cross-talk results in changes in multiple cellular and biological functions in recipient cells. Several hallmarks of cancer have reportedly been impacted by this exosome-mediated cell-to-cell communication, including modulating immune responses, reprogramming stromal cells, remodeling the architecture of the extracellular matrix, or even endowing cancer cells with characteristics of drug resistance. Selectively, loading specific oncogenic molecules into exosomes highlights exosomes as potential diagnostic biomarkers as well as therapeutic targets. In addition, exosome-based drug delivery strategies in preclinical and clinical trials have been shown to dramatically decrease cancer development. In the present review, we summarize the significant aspects of exosomes in cancer development that can provide novel strategies for potential clinical applications.


Asunto(s)
Carcinogénesis/patología , Exosomas/patología , Neoplasias/patología , Biomarcadores de Tumor/metabolismo , Comunicación Celular/fisiología , Ensayos Clínicos como Asunto , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Humanos , Neoplasias/metabolismo
10.
Blood ; 128(12): 1578-89, 2016 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-27338098

RESUMEN

Epstein-Barr virus (EBV), an oncogenic human virus, is associated with several lymphoproliferative disorders, including Burkitt lymphoma, Hodgkin disease, diffuse large B-cell lymphoma (DLBCL), and posttransplant lymphoproliferative disorder (PTLD). In vitro, EBV transforms primary B cells into lymphoblastoid cell lines (LCLs). Recently, several studies have shown that receptor tyrosine kinases (RTKs) play important roles in EBV-associated neoplasia. However, details of the involvement of RTKs in EBV-regulated B-cell neoplasia and malignancies remain largely unclear. Here, we found that erythropoietin-producing hepatocellular receptor A4 (EphA4), which belongs to the largest RTK Eph family, was downregulated in primary B cells post-EBV infection at the transcriptional and translational levels. Overexpression and knockdown experiments confirmed that EBV-encoded latent membrane protein 1 (LMP1) was responsible for this EphA4 suppression. Mechanistically, LMP1 triggered the extracellular signal-regulated kinase (ERK) pathway and promoted Sp1 to suppress EphA4 promoter activity. Functionally, overexpression of EphA4 prevented LCLs from proliferation. Pathologically, the expression of EphA4 was detected in EBV(-) tonsils but not in EBV(+) PTLD. In addition, an inverse correlation of EphA4 expression and EBV presence was verified by immunochemical staining of EBV(+) and EBV(-) DLBCL, suggesting EBV infection was associated with reduced EphA4 expression. Analysis of a public data set showed that lower EphA4 expression was correlated with a poor survival rate of DLBCL patients. Our findings provide a novel mechanism by which EphA4 can be regulated by an oncogenic LMP1 protein and explore its possible function in B cells. The results provide new insights into the role of EphA4 in EBV(+) PTLD and DLBCL.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Linfoma de Células B Grandes Difuso/mortalidad , Trastornos Linfoproliferativos/mortalidad , Receptor EphA4/metabolismo , Proteínas de la Matriz Viral/metabolismo , Células Cultivadas , Regulación hacia Abajo , Infecciones por Virus de Epstein-Barr/virología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Herpesvirus Humano 4 , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/virología , Trastornos Linfoproliferativos/metabolismo , Trastornos Linfoproliferativos/virología , Pronóstico , Receptor EphA4/genética , Transducción de Señal , Tasa de Supervivencia , Proteínas de la Matriz Viral/genética
11.
J Biomed Sci ; 25(1): 24, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540173

RESUMEN

BACKGROUND: Adiponectin (ADN) is an adipokine derived from adipocytes. It binds to adiponectin receptor 1 and 2 (AdipoR1 and R2) to exert its function in regulating whole-body energy homeostasis and inflammatory responses. However, the role of ADN-AdipoR1 signaling in intestinal inflammation is controversial, and its role in the regulation of neutrophils is still unclear. Our goal was to clarify the role of AdipoR1 signaling in colitis and the effects on neutrophils. METHODS: We generated porcine AdipoR1 transgenic mice (pAdipoR1 mice) and induced murine colitis using dextran sulfate sodium (DSS) to study the potential role of AdipoR1 in inflammatory bowel disease. We also treated a THP-1 macrophage and a HT-29 colon epithelial cell line with ADN recombinant protein to study the effects of ADN on inflammation. RESULTS: After inducing murine colitis, pAdipoR1 mice developed more severe symptoms than wild-type (WT) mice. Treatment with ADN increased the expression of pro-inflammatory factors in THP-1 and HT-29 cells. Moreover, we also observed that the expression of cyclooxygenase2 (cox2), neutrophil chemokines (CXCL1, CXCL2 and CXCL5), and the infiltration of neutrophils were increased in the colon of pAdipoR1 mice. CONCLUSIONS: Our study showed that ADN-AdipoR1 signaling exacerbated colonic inflammation through two possible mechanisms. First, ADN-AdipoR1 signaling increased pro-inflammatory factors. Second, AdipoR1 enhanced neutrophil chemokine expression and recruited neutrophils into the colonic tissue to increase inflammation.


Asunto(s)
Adiponectina/genética , Colitis/genética , Expresión Génica , Enfermedades Inflamatorias del Intestino/genética , Receptores de Adiponectina/genética , Transducción de Señal , Adiponectina/metabolismo , Animales , Sulfato de Dextran/farmacología , Femenino , Células HT29 , Humanos , Ratones Transgénicos , Receptores de Adiponectina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sus scrofa , Células THP-1
12.
Appl Microbiol Biotechnol ; 100(4): 1853-1869, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26541335

RESUMEN

A broad-spectrum monoclonal antibody (C4 MAb) against the capsid proteins (CPs) of plant potyviruses has been generated in previous studies. To clarify which epitope is recognized by this MAb, epitope mapping was performed via phage display library screening and amino acid substitution analysis. Subsequently, a 12-residue epitope in the core region of potyvirus CPs was identified and termed the C4 epitope (WxMMDGxxQxxY/F). This epitope contains tryptophan and tyrosine residues that are crucial for reacting with C4 MAb. The CP of Odontoglossum ringspot tobamovirus (ORSV) separately fused with the C4 epitope of Konjak mosaic potyvirus (KoMV), Zantedeschia mild mosaic potyvirus (ZaMMV), or Dasheen mosaic potyvirus (DsMV) was expressed in a bacterial system and purified. The results of indirect ELISA and Western blotting demonstrated that the C4 epitope of KoMV (Ko) fused to ORSV CP showed the strongest binding affinity to C4 MAb among the three viral epitope tags examined. The binding affinity between Ko tag (WTMMDGEEQIEY) and C4 MAb was determined. To examine the applicability of the Ko tag in planta, GFP and ORSV CP were transiently expressed in Nicotiana benthamiana, and both Ko-tagged proteins were specifically detected using C4 MAb. The Ko tag did not affect the silencing suppressor function of Tomato bushy stunt tombusvirus P19 in N. benthamiana. Furthermore, Ko-tagged EGFP could be successfully expressed, specifically detected and subsequently immunoprecipitated using C4 MAb in a mammalian cell system. Thus, the present study identified a common C4 epitope of potyviruses recognized by the broad-spectrum C4 and PTY 1 MAbs, and the results indicated that the newly designed Ko tag is suitable for application in bacterial, plant, and mammalian cell systems.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Epítopos de Linfocito B/inmunología , Potyvirus/inmunología , Sustitución de Aminoácidos , Mapeo Epitopo , Epítopos de Linfocito B/genética , Biblioteca de Péptidos , Potyvirus/genética
13.
BMC Complement Altern Med ; 16(1): 310, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27553852

RESUMEN

BACKGROUND: A newly defined Cordyceps species, Ophiocordyceps formosana (O. formosana) has been implicated in multitudinous bioactivities, including lowering glucose and cholesterol levels and modulating the immune system. However, few literatures demonstrate sufficient evidence to support these proposed functions. Although the use of Cordyceps spp. has been previously addressed to improve insulin insensitivity and improve the detrimental symptoms of depression; its mechanistic nature remains unsettled. Herein, we reveal the effects of O. formosana in ameliorating hyperglycemia accompanied with depression. METHODS: Diabetes was induced in mice by employing streptozotocin(STZ), a chemical that is toxic to insulin-producing ß cells of the pancreas. These streptozotocin (STZ)-induced diabetic mice showed combined symptoms of hyperglycemia and depressive behaviors. Twenty-four STZ-induced mice were randomly divided into 3 groups subjected to oral gavage with 100 µL solution of either PBS or 25 mg/mL Ophiocordyceps formosana extract (OFE) or 2 mg/mL rosiglitazone (Rosi, positive control group). Treatments were administered once per day for 28 days. An additional 6 mice without STZ induction were treated with PBS to serve as the control group. Insulin sensitivity was measured by a glucose tolerance test and levels of adiponectin in plasma and adipose tissue were also quantified. Behavioral tests were conducted and levels of monoamines in various brain regions relating to depression were evaluated. RESULTS: HPLC analysis uncovered three major constituents, adenosine, D-mannitol and cordycepin, within O. formosana similar to other prestigious medicinal Cordyceps spp.. STZ-induced diabetic mice demonstrated decreased body weight and subcutaneous adipose tissue, while these symptoms were recovered in mice receiving OFE treatment. Moreover, the OFE group displayed improved insulin sensitivity and elevated adiponectin within the plasma and adipose tissue. The anti-depressive effect of OFE was observed in various depression-related behavior tests. Concurrently, neurotransmitters, like 5-HT and dopamine in the frontal cortex, striatum and hippocampus were found to be up-regulated in OFE-treated mice. CONCLUSIONS: Our findings illustrated, for the first time, the medicinal merits of O. formosana on Type I diabetes and hyperglycemia-induced depression. OFE were found to promote the expression of adiponectin, which is an adipokine involved in insulin sensitivity and hold anti-depressive effects. In addition, OFE administration also displayed altered levels of neurotransmitters in certain brain regions that may have contributed to its anti-depressive effect. Collectively, this current study provided insights to the potential therapeutic effects of O. formosana extracts in regards to hyperglycemia and its depressive complications.


Asunto(s)
Conducta Animal/efectos de los fármacos , Productos Biológicos/farmacología , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental , Hiperglucemia/sangre , Hypocreales/química , Adiponectina , Animales , Peso Corporal/efectos de los fármacos , Depresión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Estreptozocina
14.
Virol J ; 12: 142, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26377407

RESUMEN

BACKGROUND: Citrus exocortis viroid (CEVd) and Hop stunt viroid (HSVd) are commonly found simultaneously infecting different citrus cultivars in Taiwan. A crucial question to be addressed is how accumulations of these two viroids affect each other in an infected plant. In this study, we investigated the relationship between the two viroids at macroscopic and microscopic levels. METHODS: CEVd and HSVd titers were examined by real-time RT-PCR in 17 plants of two citrus cultivars (blood orange and Murcott mandarin) every 3 months (spring, summer, fall and winter) from 2011 to 2013. Three nonparametric tests (Spearman's rank correlation coefficient, Kendall's tau rank correlation coefficient and Hoeffding's inequality) were performed to test the correlation between CEVd and HSVd. Cellular and subcellular localizations of the two viroids were detected by digoxigenin- and colloidal gold-labeled in situ hybridization using light and transmission electron microscopy. RESULTS: The two viroids were unevenly distributed in four different types of citrus tissues (rootstock bark, roots, twig bark and leaves). Compared with blood orange, Murcott mandarin was generally more susceptible to CEVd and HSVd infection. Both viroids replicated and preferentially accumulated in the underground tissues of the two citrus cultivars. Except for blood orange at high temperatures, significant positive correlations were observed between the two viroids in specific tissues of both cultivars. Relative to concentrations under single-infection conditions, the CEVd population significantly increased under double infection during half of the 12 monitored seasons; in contrast, the population of HSVd significantly increased under double infection during only one season. At cellular/subcellular levels, the two viroids showed similar localization patterns in four tissues and the cells of these tissues in the two citrus cultivars. CONCLUSIONS: Our findings of titer enhancement, localization similarity, and lack of symptom aggravation under CEVd and HSVd double infection suggest that the two viroids have a positive relationship in citrus. The combination of molecular and cellular techniques used in this study provided evidence of titer correlation and localization of co-infecting viroids in the host. These methods may thus be useful tools for exploring viroid-viroid and viroid-host interactions.


Asunto(s)
Citrus/virología , Viroides/genética , Replicación Viral , Coinfección/virología , Enfermedades de las Plantas/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Taiwán , Carga Viral
15.
Virol J ; 12: 11, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25645458

RESUMEN

BACKGROUND: Two citrus viroids, Citrus exocortis viroid (CEVd) and Hop stunt viroid (HSVd), have been reported and become potential threats to the citrus industry in Taiwan. The distributions and infection rates of two viroids have not been investigated since the two diseases were presented decades ago. The genetic diversities and evolutionary relationships of two viroids also remain unclear in the mix citrus planted region. METHODS: Multiplex RT-PCR was used to detect the two viroids for the first time in seven main cultivars of citrus. Multiplex real-time RT-PCR quantified the distributions of two viroids in four citrus tissues. Sequence alignment and phylogenetic analysis were performed using the ClustalW and MEGA6 (neighbor-joining with p-distance model), respectively. RESULTS: HSVd was found more prevalent than CEVd (32.2% vs. 30.4%). Both CEVd and HSVd were commonly found simultaneously in the different citrus cultivars (up to 55%). Results of the multiplex quantitative analysis suggested that uneven distributions of both viroids with twig bark as the most appropriate material for studies involving viroid sampling such as quarantine inspection. Sequence alignment against Taiwanese isolates, along with analysis of secondary structure, revealed the existence of 10 and 5 major mutation sites in CEVd and HSVd, respectively. The mutation sites in CEVd were located at both ends of terminal and variability domains, whereas those in HSVd were situated in left terminal and pathogenicity domains. A phylogenetic analysis incorporating worldwide viroid isolates indicated three and two clusters for the Taiwanese isolates of CEVd and HSVd, respectively. CONCLUSIONS: Moderately high infection and co-infection rates of two viroids in certain citrus cultivars suggest that different citrus cultivars may play important roles in viroid infection and evolution. These data also demonstrate that two multiplex molecular detection methods developed in the present study provide powerful tools to understand the genetic diversities among viroid isolates and quantify viroids in citrus host. Our field survey can help clarify citrus-viroid relationships as well as develop proper prevention strategies.


Asunto(s)
Citrus/virología , Variación Genética , Enfermedades de las Plantas/virología , Viroides/clasificación , Viroides/aislamiento & purificación , Genotipo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa Multiplex , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia , Taiwán , Viroides/genética
16.
J Fungi (Basel) ; 10(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38921398

RESUMEN

Rice straw is not easy to decompose, it takes a long time to compost, and the anaerobic bacteria involved in the decomposition process produce a large amount of carbon dioxide (CO2), indicating that applications for rice straw need to be developed. Recycling rice straw in agricultural crops is an opportunity to increase the sustainability of grain production. Several studies have shown that the probiotic population gradually decreases in the soil, leading to an increased risk of plant diseases and decreased biomass yield. Because the microorganisms in the soil are related to the growth of plants, when the soil microbial community is imbalanced it seriously affects plant growth. We investigated the feasibility of using composted rice stalks to artificially cultivate microorganisms obtained from the Oryza sativa-planted environment for analyzing the mycobiota and evaluating applications for sustainable agriculture. Microbes obtained from the water-submerged part (group-A) and soil part (group-B) of O. sativa were cultured in an artificial medium, and the microbial diversity was analyzed with internal transcribed spacer sequencing. Paddy field soil was mixed with fermented paddy straw compost, and the microbes obtained from the soil used for O. sativa planting were designated as group-C. The paddy fields transplanted with artificially cultured microbes from group-A were designated as group-D and those from group-B were designated as group-E. We found that fungi and yeasts can be cultured in groups-A and -B. These microbes altered the soil mycobiota in the paddy fields after transplantation in groups-D and -E compared to groups-A and -B. Development in O. sativa post treatment with microbial transplantation was observed in the groups-D and -E compared to group-C. These results showed that artificially cultured microorganisms could be efficiently transplanted into the soil and improve the mycobiota. Phytohormones were involved in improving O. sativa growth and rice yield via the submerged part-derived microbial medium (group-D) or the soil part-derived microbial medium (group-E) treatments. Collectively, these fungi and yeasts may be applied in microbial transplantation via rice straw fermentation to repair soil mycobiota imbalances, facilitating plant growth and sustainable agriculture. These fungi and yeasts may be applied in microbial transplantation to repair soil mycobiota imbalances and sustainable agriculture.

17.
Am J Physiol Lung Cell Mol Physiol ; 305(4): L291-300, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23771883

RESUMEN

Loss of lung-fluid homeostasis is the hallmark of acute lung injury (ALI). Association of catenins and actin cytoskeleton with vascular endothelial (VE)-cadherin is generally considered the main mechanism for stabilizing adherens junctions (AJs), thereby preventing disruption of lung vascular barrier function. The present study identifies endothelial focal adhesion kinase (FAK), a nonreceptor tyrosine kinase that canonically regulates focal adhesion turnover, as a novel AJ-stabilizing mechanism. In wild-type mice, induction of ALI by intraperitoneal administration of lipopolysaccharide or cecal ligation and puncture markedly decreased FAK expression in lungs. Using a mouse model in which FAK was conditionally deleted only in endothelial cells (ECs), we show that loss of EC-FAK mimicked key features of ALI (diffuse lung hemorrhage, increased transvascular albumin influx, edema, and neutrophil accumulation in the lung). EC-FAK deletion disrupted AJs due to impairment of the fine balance between the activities of RhoA and Rac1 GTPases. Deletion of EC-FAK facilitated RhoA's interaction with p115-RhoA guanine exchange factor, leading to activation of RhoA. Activated RhoA antagonized Rac1 activity, destabilizing AJs. Inhibition of Rho kinase, a downstream effector of RhoA, reinstated normal endothelial barrier function in FAK-/- ECs and lung vascular integrity in EC-FAK-/- mice. Our findings demonstrate that EC-FAK plays an essential role in maintaining AJs and thereby lung vascular barrier function by establishing the normal balance between RhoA and Rac1 activities.


Asunto(s)
Endotelio/enzimología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Eliminación de Gen , Pulmón/irrigación sanguínea , Pulmón/fisiopatología , Neuropéptidos/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Líquidos Corporales/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/patología , Endotelio/patología , Endotelio/fisiopatología , Estabilidad de Enzimas , Proteína-Tirosina Quinasas de Adhesión Focal/deficiencia , Humanos , Integrasas/metabolismo , Pulmón/enzimología , Pulmón/patología , Lesión Pulmonar/enzimología , Lesión Pulmonar/patología , Lesión Pulmonar/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos
18.
Food Funct ; 14(19): 8942-8950, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37723977

RESUMEN

Nano-sized extracellular vesicles (EV) are essential for cell communication. Studies on EV from natural sources including edible plants are gaining momentum due to the biological implications. In this study, EV from tomato fruit were isolated by ultracentrifugation and their physical and morphological features along with their biocargo profiles were analyzed. We found that tomato EV promote the growth of probiotic Lactobacillus species, while inhibiting growth of the opportunistic intestinal pathogens Clostridioides difficile and Fusobacterium nucleatum. Tomato EV reversed microbiota dysbiosis caused by F. nucleatum in a simulator of the gut microbiota fermentation model. Phospholipid analysis of tomato EV revealed that the anti-bacterial effect of tomato-EV was driven by the presence of specific lipids in the EV, as demonstrated by lipid depletion and reconstitution experiments. The findings suggest the potential of tomato-derived EV for treating gut microbiota dysbiosis and preventing intestinal bacterial infections.


Asunto(s)
Infecciones por Fusobacterium , Fusobacterium nucleatum , Solanum lycopersicum , Disbiosis , Vesículas Extracelulares , Frutas/química , Infecciones por Fusobacterium/prevención & control , Lípidos , Solanum lycopersicum/química
19.
Food Chem ; 427: 136685, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37356267

RESUMEN

Lactobacillus species confer health benefits by their metabolites, secreted molecules, and population numbers. Extracellular vesicles (EVs) are nano-sized particles released from cells and mediate intercellular communications. EVs-encapsulated cargos are a crucial key to decide involved biological function. However, little is known about the composition of EVs, leaving mechanisms by which Lactobacillus-derived EVs affect recipient cells remaining unresolved. This study examined the composition of EV proteins from Lactobacillus species by using liquid chromatography coupled with tandem mass spectrometry, including L. plantarum, L. fermentum, and L. gasseri. The major proteins of EVs are associated with biological processes such as catalytic activity, gluco-neogenesis, cell wall organization, and glycolytic processes. Motif enrichment analysis revealed that EVs from L. plantarum and L. fermentum contained proteins with serine-rich motif. This is the first study to report the composition and comparison of EV proteins from Lactobacillus species, providing important information of EVs in functional food products development.


Asunto(s)
Vesículas Extracelulares , Lactobacillales , Proteómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem , Lactobacillus , Vesículas Extracelulares/metabolismo
20.
Mol Plant Microbe Interact ; 25(5): 648-57, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22324815

RESUMEN

Small RNA-mediated RNA silencing is a widespread antiviral mechanism in plants and other organisms. Many viruses encode suppressors of RNA silencing for counter-defense. The p126 protein encoded by Tobacco mosaic virus (TMV) has been reported to be a suppressor of RNA silencing but the mechanism of its function remains unclear. This protein is unique among the known plant viral silencing suppressors because of its large size and multiple domains. Here, we report that the methyltransferase, helicase, and nonconserved region II (NONII) of p126 each has silencing-suppressor function. The silencing-suppression activities of methyltransferase and helicase can be uncoupled from their enzyme activities. Specific amino acids in NONII previously shown to be crucial for viral accumulation and symptom development are also crucial for silencing suppression. These results suggest that some viral proteins have evolved to possess modular structural domains that can independently interfere with host silencing, and that this may be an effective mechanism of increasing the robustness of a virus.


Asunto(s)
Nicotiana/virología , Enfermedades de las Plantas/virología , Virus del Mosaico del Tabaco/metabolismo , Proteínas Virales/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Análisis Mutacional de ADN , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes , Metiltransferasas/genética , Metiltransferasas/metabolismo , Hojas de la Planta/virología , Estructura Terciaria de Proteína , Interferencia de ARN/inmunología , Nicotiana/genética , Virus del Mosaico del Tabaco/enzimología , Virus del Mosaico del Tabaco/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA