Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(8): e111472, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36912149

RESUMEN

For shade-intolerant plants, changes in light quality through competition from neighbors trigger shade avoidance syndrome (SAS): a series of morphological and physiological adaptations that are ultimately detrimental to plant health and crop yield. Phytochrome-interacting factor 7 (PIF7) is a major transcriptional regulator of SAS in Arabidopsis; however, how it regulates gene expression is not fully understood. Here, we show that PIF7 directly interacts with the histone chaperone anti-silencing factor 1 (ASF1). The ASF1-deprived asf1ab mutant showed defective shade-induced hypocotyl elongation. Histone regulator homolog A (HIRA), which mediates deposition of the H3.3 variant into chromatin, is also involved in SAS. RNA/ChIP-sequencing analyses identified the role of ASF1 in the direct regulation of a subset of PIF7 target genes. Furthermore, shade-elicited gene activation is accompanied by H3.3 enrichment, which is mediated by the PIF7-ASF1-HIRA regulatory module. Collectively, our data reveal that PIF7 recruits ASF1-HIRA to increase H3.3 incorporation into chromatin to promote gene transcription, thus enabling plants to effectively respond to environmental shade.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factor VII/genética , Fitocromo/genética , Cromatina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ADN/metabolismo
2.
Plant Cell ; 34(3): 1100-1116, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954802

RESUMEN

Chromatin remodelers act in an ATP-dependent manner to modulate chromatin structure and thus genome function. Here, we report that the Arabidopsis (Arabidopsis thaliana) remodeler CHROMATIN REMODELING19 (CHR19) is enriched in gene body regions, and its depletion causes massive changes in nucleosome position and occupancy in the genome. Consistent with these changes, an in vitro assay verified that CHR19 can utilize ATP to slide nucleosomes. A variety of inducible genes, including several important genes in the salicylic acid (SA) and jasmonic acid (JA) pathways, were transcriptionally upregulated in the chr19 mutant under normal growth conditions, indicative of a role of CHR19 in transcriptional repression. In addition, the chr19 mutation triggered higher susceptibility to the JA pathway-defended necrotrophic fungal pathogen Botrytis cinerea, but did not affect the growth of the SA pathway-defended hemibiotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Expression of CHR19 was tissue-specific and inhibited specifically by SA treatment. Such inhibition significantly decreased the local chromatin enrichment of CHR19 at the associated SA pathway genes, which resulted in their full activation upon SA treatment. Overall, our findings clarify CHR19 to be a novel regulator acting at the chromatin level to impact the transcription of genes underlying plant resistance to different pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/genética , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
New Phytol ; 239(1): 189-207, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129076

RESUMEN

The histone variant H2A.Z plays key functions in transcription and genome stability in all eukaryotes ranging from yeast to human, but the molecular mechanisms by which H2A.Z is incorporated into chromatin remain largely obscure. Here, we characterized the two homologs of yeast Chaperone for H2A.Z-H2B (Chz1) in Arabidopsis thaliana, AtChz1A and AtChz1B. AtChz1A/AtChz1B were verified to bind to H2A.Z-H2B and facilitate nucleosome assembly in vitro. Simultaneous knockdown of AtChz1A and AtChz1B, which exhibit redundant functions, led to a genome-wide reduction in H2A.Z and phenotypes similar to those of the H2A.Z-deficient mutant hta9-1hta11-2, including early flowering and abnormal flower morphologies. Interestingly, AtChz1A was found to physically interact with ACTIN-RELATED PROTEIN 6 (ARP6), an evolutionarily conserved subunit of the SWR1 chromatin-remodeling complex. Genetic interaction analyses showed that atchz1a-1atchz1b-1 was hypostatic to arp6-1. Consistently, genome-wide profiling analyses revealed partially overlapping genes and fewer misregulated genes and H2A.Z-reduced chromatin regions in atchz1a-1atchz1b-1 compared with arp6-1. Together, our results demonstrate that AtChz1A and AtChz1B act as histone chaperones to assist the deposition of H2A.Z into chromatin via interacting with SWR1, thereby playing critical roles in the transcription of genes involved in flowering and many other processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ensamble y Desensamble de Cromatina , Chaperonas de Histonas , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(52): 33679-33688, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318175

RESUMEN

Photomorphogenesis is a critical developmental process bridging light-regulated transcriptional reprogramming with morphological changes in organisms. Strikingly, the chromatin-based transcriptional control of photomorphogenesis remains poorly understood. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog of ATP-dependent chromatin-remodeling factor AtINO80 represses plant photomorphogenesis. Loss of AtINO80 inhibited hypocotyl cell elongation and caused anthocyanin accumulation. Both light-induced genes and dark-induced genes were affected in the atino80 mutant. Genome-wide occupancy of the H2A.Z histone variant and levels of histone H3 were reduced in atino80 In particular, AtINO80 bound the gene body of ELONGATED HYPOCOTYL 5 (HY5), resulting in lower chromatin incorporations of H2A.Z and H3 at HY5 in atino80 Genetic analysis revealed that AtINO80 acts in a phytochrome B- and HY5-dependent manner in the regulation of photomorphogenesis. Together, our study elucidates a mechanism wherein AtINO80 modulates nucleosome density and H2A.Z incorporation and represses the transcription of light-related genes, such as HY5, to fine tune plant photomorphogenesis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Histonas/metabolismo , Luz , Morfogénesis/efectos de la radiación , Nucleosomas/metabolismo , Adenosina Trifosfatasas/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histonas/genética , Mutación/genética , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 117(48): 30391-30399, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199628

RESUMEN

Nucleosome Assembly Protein 1 (NAP1) family proteins are evolutionarily conserved histone chaperones that play important roles in diverse biological processes. In this study, we determined the crystal structure of Arabidopsis NAP1-Related Protein 1 (NRP1) complexed with H2A-H2B and uncovered a previously unknown interaction mechanism in histone chaperoning. Both in vitro binding and in vivo plant rescue assays proved that interaction mediated by the N-terminal α-helix (αN) domain is essential for NRP1 function. In addition, the C-terminal acidic domain (CTAD) of NRP1 binds to H2A-H2B through a conserved mode similar to other histone chaperones. We further extended previous knowledge of the NAP1-conserved earmuff domain by mapping the amino acids of NRP1 involved in association with H2A-H2B. Finally, we showed that H2A-H2B interactions mediated by αN, earmuff, and CTAD domains are all required for the effective chaperone activity of NRP1. Collectively, our results reveal multiple interaction modes of a NAP1 family histone chaperone and shed light on how histone chaperones shield H2A-H2B from nonspecific interaction with DNA.


Asunto(s)
Histonas/química , Modelos Moleculares , Proteína 1 de Ensamblaje de Nucleosomas/química , Secuencias de Aminoácidos , Aminoácidos , Arabidopsis , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Histonas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
6.
Plant J ; 103(3): 1010-1024, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32324922

RESUMEN

Histones are highly basic proteins involved in packaging DNA into chromatin, and histone modifications are fundamental in epigenetic regulation in eukaryotes. Among the numerous chromatin modifiers identified in Arabidopsis (Arabidopsis thaliana), MORF-RELATED GENE (MRG)1 and MRG2 have redundant functions in reading histone H3 lysine 36 trimethylation (H3K36me3). Here, we show that MRG2 binds histone chaperones belonging to the NUCLEOSOME ASSEMBLY PROTEIN 1 (NAP1) family, including NAP1-RELATED PROTEIN (NRP)1 and NRP2. Characterization of the loss-of-function mutants mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 revealed that MRG1/MRG2 and NRP1/NRP2 regulate flowering time through fine-tuning transcription of floral genes by distinct molecular mechanisms. In particular, the physical interaction between NRP1/NRP2 and MRG1/MRG2 inhibited the binding of MRG1/MRG2 to the transcription factor CONSTANS (CO), leading to a transcriptional repression of FLOWERING LOCUS T (FT) through impeded H4K5 acetylation (H4K5ac) within the FT chromatin. By contrast, NRP1/NRP2 and MRG1/MRG2 act together, likely in a multiprotein complex manner, in promoting the transcription of FLOWERING LOCUS C (FLC) via an increase of both H4K5ac and H3K9ac in the FLC chromatin. Because the expression pattern of FLC represents the major category of differentially expressed genes identified by genome-wide RNA-sequencing analysis in the mrg1 mrg2, nrp1 nrp2 and mrg1 mrg2 nrp1 nrp2 mutants, it is reasonable to speculate that the NRP1/NRP2-MRG1/MRG2 complex may be involved in transcriptional activation of genes beyond FLC and flowering time control.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/fisiología , Flores/crecimiento & desarrollo , Chaperonas de Histonas/fisiología , Chaperonas Moleculares/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Flores/metabolismo , Flores/fisiología , Genes de Plantas/genética , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Chaperonas de Histonas/metabolismo , Código de Histonas , Chaperonas Moleculares/metabolismo
7.
New Phytol ; 230(5): 1967-1984, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33606283

RESUMEN

Chromatin modifications play important roles in plant adaptation to abiotic stresses, but the precise function of histone H3 lysine 36 (H3K36) methylation in drought tolerance remains poorly evaluated. Here, we report that SDG708, a specific H3K36 methyltransferase, functions as a positive regulator of drought tolerance in rice. SDG708 promoted abscisic acid (ABA) biosynthesis by directly targeting and activating the crucial ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (OsNCED3) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 5 (OsNCED5). Additionally, SDG708 induced hydrogen peroxide accumulation in the guard cells and promoted stomatal closure to reduce water loss. Overexpression of SDG708 concomitantly enhanced rice drought tolerance and increased grain yield under normal and drought stress conditions. Thus, SDG708 is potentially useful as an epigenetic regulator in breeding for grain yield improvement.


Asunto(s)
Oryza , Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Histona Metiltransferasas , Histonas , Metiltransferasas/genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
8.
New Phytol ; 227(5): 1453-1466, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32315442

RESUMEN

Day-length changes represent an important cue for modulating flowering time. In Arabidopsis, the expression of the florigen gene FLOWERING LOCUS T (FT) exhibits a 24-h circadian rhythm under long-day (LD) conditions. Here we focus on the chromatin-based mechanism regarding the control of FT expression. We conducted co-immunoprecipitation assays along with LC-MS/MS analysis and identified HD2C histone deacetylase as the binding protein of the H3K4/H3K36 methylation reader MRG2. HD2C and MRG1/2 regulate flowering time under LD conditions, but not under short-day conditions. Moreover, HD2C functions as an effective deacetylase in planta, mainly targeting H3K9ac, H3K23ac and H3K27ac. At dusk, HD2C is recruited to FT to deacetylate histones and repress transcription in an MRG1/2-dependent manner. More importantly, HD2C competes with CO for the binding of MRG2, and the accumulation of HD2C at the FT locus occurs at the end of the day. Our findings not only reveal a histone deacetylation mechanism contributing to prevent FT overexpression and precocious flowering, but also support the model in which the histone methylation readers MRG1/2 provide a platform on chromatin for connecting regulatory factors involved in activating FT expression in response to daylight and decreasing FT expression around dusk under long days.


Asunto(s)
Proteínas de Arabidopsis , Florigena , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatografía Liquida , Florigena/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histonas/metabolismo , Metilación , Fotoperiodo , Espectrometría de Masas en Tándem
9.
Plant Cell ; 29(2): 260-276, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28138017

RESUMEN

NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) defines an evolutionarily conserved family of histone chaperones and loss of function of the Arabidopsis thaliana NAP1 family genes NAP1-RELATED PROTEIN1 (NRP1) and NRP2 causes abnormal root hair formation. Yet, the underlying molecular mechanisms remain unclear. Here, we show that NRP1 interacts with the transcription factor WEREWOLF (WER) in vitro and in vivo and enriches at the GLABRA2 (GL2) promoter in a WER-dependent manner. Crystallographic analysis indicates that NRP1 forms a dimer via its N-terminal α-helix. Mutants of NRP1 that either disrupt the α-helix dimerization or remove the C-terminal acidic tail, impair its binding to histones and WER and concomitantly lead to failure to activate GL2 transcription and to rescue the nrp1-1 nrp2-1 mutant phenotype. Our results further demonstrate that WER-dependent enrichment of NRP1 at the GL2 promoter is involved in local histone eviction and nucleosome loss in vivo. Biochemical competition assays imply that the association between NRP1 and histones may counteract the inhibitory effect of histones on the WER-DNA interaction. Collectively, our study provides important insight into the molecular mechanisms by which histone chaperones are recruited to target chromatin via interaction with a gene-specific transcription factor to moderate chromatin structure for proper root hair development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Proteínas de Homeodominio/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dimerización , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Histonas/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas
11.
Plant J ; 95(1): 86-100, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29676825

RESUMEN

Stem cells in both plant and animal kingdoms reside in a specialized cellular context called the stem cell niche (SCN). SCN integrity is crucial for organism development. Here we show that the H3/H4 histone chaperone CHROMATIN ASSEMBLY FACTOR-1 (CAF-1) and the H2A/H2B histone chaperone NAP1-RELATED PROTEIN1/2 (NRP1/2) play synergistic roles in Arabidopsis root SCN maintenance. Compared with either the m56-1 double mutant deprived of NRP1 and NRP2 or the fas2-4 mutant deprived of CAF-1, the combined m56-1fas2-4 triple mutant displayed a much more severe short-root phenotype. The m56-1fas2-4 mutant root lost the normal organizing center Quiescent Center (QC), and some initial stem cells differentiated precociously. Microarray analysis unraveled the deregulation of 2735 genes within the Arabidopsis genome (representing >8% of all genes) in the m56-1fas2-4 mutant roots. Expression of some SCN key regulatory genes (e.g. WOX5, PLT1, SHR) was not limiting, rather the plant hormone auxin gradient maximum at QC was impaired. The mutant roots showed programmed cell death and high levels of the DNA damage marked histone H2A.X phosphorylation (γ-H2A.X). Knockout of either ATAXIA-TELANGIECTASIA MUTATED (ATM) or ATR, encoding a DNA damage response kinase, rescued in part the cell death and the short-root phenotype of the m56-1fas2-4 mutant. Collectively, our study indicated that NRP1/2 and CAF-1 act cooperatively in regulating proper genome transcription, in sustaining chromatin replication and in maintaining genome integrity, which are crucial for proper SCN function during continuous post-embryonic root development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Chaperonas de Histonas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Nicho de Células Madre , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Chaperonas de Histonas/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meristema/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Nicho de Células Madre/fisiología
12.
Plant J ; 2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-29797624

RESUMEN

Although increasing experimental evidence demonstrates that histone methylations play important roles in Arabidopsis plant growth and development, little information is available regarding Brassica napus. In this study, we characterized two genes encoding homologues of the Arabidopsis histone 3 lysine 36 (H3K36) methyltransferase SDG8, namely, BnaSDG8.A and BnaSDG8.C. Although no duplication of SDG8 homologous genes had been previously reported to occur during the evolution of any sequenced species, a domain-duplication was uncovered in BnaSDG8.C. This duplication led to the identification of a previously unknown NNH domain in the SDG8 homologues, providing a useful reference for future studies and revealing the finer mechanism of SDG8 function. One NNH domain is present in BnaSDG8.A, while two adjacent NNH domains are present in BnaSDG8.C. Reverse transcriptase-quantitative polymerase chain reaction analysis revealed similar patterns but with varied levels of expression of BnaSDG8.A/C in different plant organs/tissues. To directly investigate their function, BnaSDG8.A/C cDNA was ectopically expressed to complement the Arabidopsis mutant. We observed that the expression of either BnaSDG8.A or BnaSDG8.C could rescue the Arabidopsis sdg8 mutant to the wild-type phenotype. Using RNAi and CRISPR/Cas9-mediated gene editing, we obtained BnaSDG8.A/C knockdown and knockout mutants with the early flowering phenotype as compared with the control. Further analysis of two types of the mutants revealed that BnaSDG8.A/C are required for H3K36 m2/3 deposition and prevent the floral transition of B. napus by directly enhancing the H3K36 m2/3 levels at the BnaFLC chromatin loci. This observation on the floral transition by epigenetic modification in B. napus provides useful information for breeding early-flowering varieties.

13.
BMC Genomics ; 20(1): 533, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253095

RESUMEN

BACKGROUND: Polycomb group (PcG) proteins play important roles in animal and plant development and stress response. Polycomb repressive complex 1 (PRC1) and PRC2 are the key epigenetic regulators of gene expression, and are involved in almost all developmental stages. PRC1 catalyzes H2A monoubiquitination resulting in transcriptional silencing or activation. The PRC1 components in the green lineage were identified and evolution and conservation was analyzed by bioinformatics techniques. RING Finger Protein 1 (RING1), B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Like Heterochromatin Protein 1 (LHP1) and Embryonic Flower 1 (EMF1) are the PRC1 core components and Vernalization 1 (VRN1), VP1/ABI3-Like 1/2/3 (VAL1/2/3), Alfin-like 1-7 (AL1-7), Inhibitor of growth 1/2 (ING1/2), and Early Bolting in Short Days (EBS) / Short Life (SHL) are the associated factors. RESULTS: Each PRC1 subunit possesses special domain organizations, such as RING and the ring finger and WD40-associated ubiquitin-like (RAWUL) domains for RING1 and BMI1, chromatin organization modifier (CHROMO) and chromo shadow (ChSh) domains for LHP1, one or two B3 DNA binding domain(s) for VRN1, B3 and zf-CW domains for VAL1/2/3, Alfin and Plant HomeoDomain (PHD) domains for AL1-7, ING and PHD domains for ING1/2, Bromoadjacent homology (BAT) and PHD domains for EBS/SHL. Six new motifs are uncovered in EMF1. The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1-7, ING1/2, and EBS/SHL exist from alga to higher plants, whereas LHP1 only occurs in higher plants. EMF1 and VRN1 are present only in eudicots. PRC1 components undergo duplication in the plant evolution. Most of plants carry the homologous core component LHP1, the associated factor EMF1, and several homologs in RING1, BMI1, VRN1, AL1-7, ING1/2/3, and EBS/SHL. Cabbage, cotton, poplar, orange and maize often exhibit more gene copies than other species. Domain organization analysis shows that duplicated gene functions may be of diverse. CONCLUSIONS: The PRC1 core components RING1 and BMI1, and the associated factors VAL1/2/3, AL1-7, ING1/2, and EBS/SHL originate from algae. The core component LHP1 is from moss and the associated factors EMF1 and VRN1 are from dicotyledon. PRC1 components are of functional redundancy and diversity in evolution.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Complejo Represivo Polycomb 1/química , Complejo Represivo Polycomb 1/genética , Plantas/enzimología , Plantas/genética , Complejo Represivo Polycomb 1/metabolismo , Dominios Proteicos
14.
New Phytol ; 221(2): 1101-1116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30156703

RESUMEN

Covalent modifications of histones are essential to control a wide range of processes during development and adaptation to environmental changes. With the establishment of reference epigenomes, patterns of histone modifications were correlated with transcriptionally active or silenced genes. These patterns imply the need for the precise and dynamic coordination of different histone-modifying enzymes to control transcription at a given gene. Classically, the influence of these enzymes on gene expression is examined separately and their interplays rarely established. In Arabidopsis, HISTONE MONOUBIQUITINATION2 (HUB2) mediates H2B monoubiquitination (H2Bub1), whereas SET DOMAIN GROUP8 (SDG8) catalyzes H3 lysine 36 trimethylation (H3K36me3). In this work, we crossed hub2 with sdg8 mutants to elucidate their functional relationships. Despite similar phenotypic defects, sdg8 and hub2 mutations broadly affect genome transcription and plant growth and development synergistically. Also, whereas H3K4 methylation appears largely dependent on H2Bub1, H3K36me3 and H2Bub1 modifications mutually reinforce each other at some flowering time genes. In addition, SDG8 and HUB2 jointly antagonize the increase of the H3K27me3 repressive mark. Collectively, our data provide an important insight into the interplay between histone marks and highlight their interactive complexity in regulating chromatin landscape which might be necessary to fine-tune transcription and ensure plant developmental plasticity.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Código de Histonas , Histonas/genética , Lisina/metabolismo , Metilación , Mutación , Motivos de Nucleótidos , Transcripción Genética , Ubiquitinación
15.
New Phytol ; 223(1): 336-353, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843208

RESUMEN

The proper modulation of chromatin structure is dependent on the activities of chromatin-remodeling factors and their interplays. Here, we show that the Arabidopsis chromatin-remodeler AtINO80 interacts with the actin-related protein AtARP5 and can form a larger protein complex. Genetic analysis demonstrated that AtARP5 acts in concert with AtINO80 during plant cellular proliferation and replication stress response. At the same time, AtARP5 is not required for AtINO80-mediated control of flowering time and related transcriptional regulation, and their chromatin distribution patterns on regions of flowering-repressor genes FLC/MAF4/MAF5 are also different. An in vitro DNase I digestion assay revealed that the AtINO80N-terminus can weakly bind DNA, an interaction that is significantly inhibited by H2A.Z/H2B addition. AtARP6, a specific subunit of SWR1-C that mediates the H2A.Z exchange, was found to have a previously unexpected inhibitory role in the local chromatin enrichment of AtINO80. Further genetic analyses revealed the functional interplay between AtINO80 and AtARP6 and their critical roles in embryogenesis and post-embryonic organ development, as well as the synergy of AtARP5 and AtARP6 in maintaining genomic stability. Our findings provide insights into the common and distinct roles of AtINO80 and AtARP5 in diverse aspects of plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Microfilamentos/metabolismo , Desarrollo de la Planta , Proteínas de Arabidopsis/genética , Puntos de Control del Ciclo Celular , Proliferación Celular , Cromatina/metabolismo , Daño del ADN , Replicación del ADN , ADN de Plantas/metabolismo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Inestabilidad Genómica , Proteínas de Microfilamentos/genética , Mutación/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Poliadenilación , Unión Proteica , Fase S , Empalmosomas/metabolismo
16.
Plant Physiol ; 176(2): 1341-1351, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29187567

RESUMEN

Shade avoidance syndrome (SAS) allows a plant grown in a densely populated environment to maximize opportunities to access to sunlight. Although it is well established that SAS is accompanied by gene expression changes, the underlying molecular mechanism needs to be elucidated. Here, we identify the H3K4me3/H3K36me3-binding proteins, Morf Related Gene (MRG) group proteins MRG1 and MRG2, as positive regulators of shade-induced hypocotyl elongation in Arabidopsis (Arabidopsis thaliana). MRG2 binds PHYTOCHROME-INTERACTING FACTOR7 (PIF7) and regulates the expression of several common downstream target genes, including YUCCA8 and IAA19 involved in the auxin biosynthesis or response pathway and PRE1 involved in brassinosteroid regulation of cell elongation. In response to shade, PIF7 and MRG2 are enriched at the promoter and gene-body regions and are necessary for increase of histone H4 and H3 acetylation to promote target gene expression. Our study uncovers a mechanism in which the shade-responsive factor PIF7 recruits MRG1/MRG2 that binds H3K4me3/H3K36me3 and brings histone-acetylases to induce histone acetylations to promote expression of shade responsive genes, providing thus a molecular mechanistic link coupling the environmental light to epigenetic modification in regulation of hypocotyl elongation in plant SAS.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Acetilación , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Histonas/genética , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Lisina/metabolismo , Metilación , Plantas Modificadas Genéticamente
17.
J Exp Bot ; 70(2): 459-468, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30346598

RESUMEN

The Arabidopsis thaliana gain-of-function T-DNA insertion mutant jaw-1D produces miR319A, a microRNA that represses genes encoding CIN-like TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), a family of transcription factors that play key roles in leaf morphogenesis. In this study, we show that jaw-1D is responsive to paramutation-like epigenetic silencing. A genetic cross of jaw-1D with the polycomb gene mutant curly leaf-29 (clf-29) leads to attenuation of the jaw-1D mutant plant phenotype. This induced mutation, jaw-1D*, was associated with down-regulation of miR319A, was heritable independently from clf-29, and displayed paramutation-like non-Mendelian inheritance. Down-regulation of miR319A in jaw-1D* was linked to elevated levels of histone H3 lysine 9 dimethylation and DNA methylation at the CaMV35S enhancer located within the activation-tagging T-DNA of the jaw-1D locus. Examination of 21 independent T-DNA insertion mutant lines revealed that 11 could attenuate the jaw-1D mutant phenotype in a similar way to the paramutation induced by clf-29. These paramutagenic mutant lines shared the common feature that their T-DNA insertion was present as multi-copy tandem repeats and contained high levels of CG and CHG methylation. Our results provide important insights into paramutation-like epigenetic silencing, and caution against the use of jaw-1D in genetic interaction studies.


Asunto(s)
Mutación con Ganancia de Función , Silenciador del Gen , MicroARNs/genética , Arabidopsis
18.
PLoS Genet ; 12(1): e1005771, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26760036

RESUMEN

Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs.


Asunto(s)
Proteínas de Arabidopsis/genética , Flores/genética , Proteínas de Homeodominio/genética , Proteínas del Grupo Polycomb/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Plantones/crecimiento & desarrollo , Factores de Transcripción/genética , Arabidopsis , Proteínas de Arabidopsis/biosíntesis , Proteínas Portadoras/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Histonas , Proteínas de Homeodominio/biosíntesis , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas del Grupo Polycomb/biosíntesis , Plantones/genética , Factores de Transcripción/biosíntesis
19.
Biochem Soc Trans ; 46(4): 957-966, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30065110

RESUMEN

In plant and metazoan, Polycomb Group (PcG) proteins play key roles in regulating developmental processes by repression of gene expression. PcG proteins function as multi-protein complexes; among them the best characterized ones are Polycomb Repressive Complex 1 (PRC1) and PRC2. PRC2 catalyzes histone H3 lysine 27 trimethylation (H3K27me3), and PRC1 can bind H3K27me3 and catalyzes H2A monoubiquitination. While the PRC2 components and molecular functions are evolutionarily conserved, varied PRC1 complexes are found and they show high divergences between animals and plants. In addition to the core subunits, an exponentially increasing number of PRC1-associated factors have been identified in Arabidopsis thaliana Recent studies have also unraveled cross-component interactions and intertwined roles of PRC1 and PRC2 in chromatin modulation. In addition, complexities of interactions and functions between PcG and Trithorax Group proteins have been observed. This short review summarizes up current knowledge to provide insight about repressive functional mechanism of PRC1 and its interplay with other factors.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigénesis Genética , Glucosiltransferasas/metabolismo , Unión Proteica , Ubiquitinación
20.
Plant Physiol ; 174(2): 1205-1215, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28455402

RESUMEN

Epigenetic reprogramming occurring during reproduction is crucial for both animal and plant development. Histone H3 Lys 4 trimethylation (H3K4me3) is an evolutionarily conserved epigenetic mark of transcriptional active euchromatin. While much has been learned in somatic cells, H3K4me3 deposition and function in gametophyte is poorly studied. Here, we demonstrate that SET DOMAIN GROUP2 (SDG2)-mediated H3K4me3 deposition participates in epigenetic reprogramming during Arabidopsis male gametogenesis. We show that loss of SDG2 barely affects meiosis and cell fate establishment of haploid cells. However, we found that SDG2 is critical for postmeiotic microspore development. Mitotic cell division progression is partly impaired in the loss-of-function sdg2-1 mutant, particularly at the second mitosis setting up the two sperm cells. We demonstrate that SDG2 is involved in promoting chromatin decondensation in the pollen vegetative nucleus, likely through its role in H3K4me3 deposition, which prevents ectopic heterochromatic H3K9me2 speckle formation. Moreover, we found that derepression of the LTR retrotransposon ATLANTYS1 is compromised in the vegetative cell of the sdg2-1 mutant pollen. Consistent with chromatin condensation and compromised transcription activity, pollen germination and pollen tube elongation, representing the key function of the vegetative cell in transporting sperm cells during fertilization, are inhibited in the sdg2-1 mutant. Taken together, we conclude that SDG2-mediated H3K4me3 is an essential epigenetic mark of the gametophyte chromatin landscape, playing critical roles in gamete mitotic cell cycle progression and pollen vegetative cell function during male gametogenesis and beyond.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Cromatina/metabolismo , Gametogénesis en la Planta , Histonas/metabolismo , Lisina/metabolismo , Mitosis , Arabidopsis/genética , Núcleo Celular/metabolismo , Gametogénesis en la Planta/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Heterocromatina/metabolismo , Meiosis/genética , Metilación , Mitosis/genética , Mutación/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Retroelementos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA