Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 187(7): 1733-1744.e12, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552612

RESUMEN

Mastigonemes, the hair-like lateral appendages lining cilia or flagella, participate in mechanosensation and cellular motion, but their constituents and structure have remained unclear. Here, we report the cryo-EM structure of native mastigonemes isolated from Chlamydomonas at 3.0 Å resolution. The long stem assembles as a super spiral, with each helical turn comprising four pairs of anti-parallel mastigoneme-like protein 1 (Mst1). A large array of arabinoglycans, which represents a common class of glycosylation in plants and algae, is resolved surrounding the type II poly-hydroxyproline (Hyp) helix in Mst1. The EM map unveils a mastigoneme axial protein (Mstax) that is rich in heavily glycosylated Hyp and contains a PKD2-like transmembrane domain (TMD). Mstax, with nearly 8,000 residues spanning from the intracellular region to the distal end of the mastigoneme, provides the framework for Mst1 assembly. Our study provides insights into the complexity of protein and glycan interactions in native bio-architectures.


Asunto(s)
Chlamydomonas , Cilios , Chlamydomonas/citología , Cilios/química , Cilios/ultraestructura , Flagelos , Polisacáridos , Proteínas
2.
Nature ; 629(8014): 1118-1125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778102

RESUMEN

Higher plants survive terrestrial water deficiency and fluctuation by arresting cellular activities (dehydration) and resuscitating processes (rehydration). However, how plants monitor water availability during rehydration is unknown. Although increases in hypo-osmolarity-induced cytosolic Ca2+ concentration (HOSCA) have long been postulated to be the mechanism for sensing hypo-osmolarity in rehydration1,2, the molecular basis remains unknown. Because osmolarity triggers membrane tension and the osmosensing specificity of osmosensing channels can only be determined in vivo3-5, these channels have been classified as a subtype of mechanosensors. Here we identify bona fide cell surface hypo-osmosensors in Arabidopsis and find that pollen Ca2+ spiking is controlled directly by water through these hypo-osmosensors-that is, Ca2+ spiking is the second messenger for water status. We developed a functional expression screen in Escherichia coli for hypo-osmosensitive channels and identified OSCA2.1, a member of the hyperosmolarity-gated calcium-permeable channel (OSCA) family of proteins6. We screened single and high-order OSCA mutants, and observed that the osca2.1/osca2.2 double-knockout mutant was impaired in pollen germination and HOSCA. OSCA2.1 and OSCA2.2 function as hypo-osmosensitive Ca2+-permeable channels in planta and in HEK293 cells. Decreasing osmolarity of the medium enhanced pollen Ca2+ oscillations, which were mediated by OSCA2.1 and OSCA2.2 and required for germination. OSCA2.1 and OSCA2.2 convert extracellular water status into Ca2+ spiking in pollen and may serve as essential hypo-osmosensors for tracking rehydration in plants.


Asunto(s)
Arabidopsis , Señalización del Calcio , Calcio , Germinación , Concentración Osmolar , Polen , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Germinación/genética , Mutación , Polen/genética , Polen/metabolismo , Agua/metabolismo , Células HEK293 , Humanos , Deshidratación
3.
Proc Natl Acad Sci U S A ; 121(10): e2319366121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422020

RESUMEN

Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Anciano , Humanos , Masculino , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Envejecimiento/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Pronóstico
4.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38367612

RESUMEN

Consequences of perceptual training, such as improvements in discriminative ability, are highly stimulus and task specific. Therefore, most studies on auditory training-induced plasticity in adult brain have focused on the sensory aspects, particularly on functional and structural effects in the auditory cortex. Auditory training often involves, other than auditory demands, significant cognitive components. Yet, how auditory training affects cognition-related brain regions, such as the hippocampus, remains unclear. Here, we found in female rats that auditory cue-based go/no-go training significantly improved the memory-guided behaviors associated with hippocampus. The long-term potentiations of the trained rats recorded in vivo in the hippocampus were also enhanced compared with the naïve rats. In parallel, the phosphorylation level of calcium/calmodulin-dependent protein kinase II and the expression of parvalbumin-positive interneurons in the hippocampus were both upregulated. These findings demonstrate that auditory training substantially remodels the processing and function of brain regions beyond the auditory system, which are associated with task demands.


Asunto(s)
Corteza Auditiva , Hipocampo , Ratas , Femenino , Animales , Hipocampo/fisiología , Encéfalo , Potenciación a Largo Plazo , Corteza Auditiva/fisiología
5.
Genomics ; 116(1): 110765, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113975

RESUMEN

Cholangiocarcinoma (CCA) is an aggressive bile duct malignancy with poor prognosis. To improve our understanding of the biological characteristics of CCA and develop effective therapies, appropriate preclinical models are required. Here, we established and characterized 12 novel patient-derived primary cancer cell (PDPC) models using multi-region sampling. At the genomic level of PDPCs, we observed not only commonly mutated genes, such as TP53, JAK3, and KMT2C, consistent with the reports in CCA, but also specific mutation patterns in each cell line. In addition, specific expression patterns with distinct biological functions and pathways involved were also observed in the PDPCs at the transcriptomic level. Furthermore, the drug-sensitivity results revealed that the PDPCs exhibited different responses to the six commonly used compounds. Our findings indicate that the established PDPCs can serve as novel in vitro reliable models to provide a crucial molecular basis for improving the understanding of tumorigenesis and its treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/metabolismo , Perfilación de la Expresión Génica/métodos , Neoplasias de los Conductos Biliares/metabolismo , Línea Celular Tumoral , Genómica , Conductos Biliares Intrahepáticos/metabolismo
6.
J Cell Mol Med ; 28(11): e18476, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842136

RESUMEN

Osteoarthritis (OA) is a complicated disease that involves apoptosis and mitophagy. MST1 is a pro-apoptotic factor. Hence, decreasing its expression plays an anti-apoptotic effect. This study aims to investigate the protective effect of MST1 inhibition on OA and the underlying processes. Immunofluorescence (IF) was used to detect MST1 expression in cartilage tissue. Western Blot, ELISA and IF were used to analyse the expression of inflammation, extracellular matrix (ECM) degradation, apoptosis and mitophagy-associated proteins. MST1 expression in chondrocytes was inhibited using siRNA and shRNA in vitro and in vivo. Haematoxylin-Eosin, Safranin O-Fast Green and alcian blue staining were used to evaluate the therapeutic effect of inhibiting MST1. This study discovered that the expression of MST1 was higher in OA patients. Inhibition of MST1 reduced inflammation, ECM degradation and apoptosis and enhanced mitophagy in vitro. MST1 inhibition slows OA progression in vivo. Inhibiting MST1 suppressed apoptosis, inflammation and ECM degradation via promoting Parkin-mediated mitophagy and the Nrf2-NF-κB axis. The results suggest that MST1 is a possible therapeutic target for the treatment of osteoarthritis as its inhibition delays the progression of OA through the Nrf2-NF-κB axis and mitophagy.


Asunto(s)
Apoptosis , Condrocitos , Progresión de la Enfermedad , Mitofagia , Factor 2 Relacionado con NF-E2 , FN-kappa B , Osteoartritis , Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Humanos , Masculino , Ratones , Apoptosis/genética , Condrocitos/metabolismo , Condrocitos/patología , Matriz Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Inflamación/patología , Inflamación/metabolismo , Inflamación/genética , Péptidos y Proteínas de Señalización Intracelular , Mitofagia/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
7.
J Cell Physiol ; 239(4): e31177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38214132

RESUMEN

It is well-recognized that blood flow at branches and bends of arteries generates disturbed shear stress, which plays a crucial in driving atherosclerosis. Flow-generated fluid shear stress (FSS), as one of the key hemodynamic factors, is appreciated for its critical involvement in regulating angiogenesis to facilitate wound healing and tissue repair. Endothelial cells can directly sense FSS but the mechanobiological mechanism by which they decode different patterns of FSS to trigger angiogenesis remains unclear. In the current study, laminar shear stress (LSS, 15 dyn/cm2) was employed to mimic physiological blood flow, while disturbed shear stress (DSS, ranging from 0.5 ± 4 dyn/cm2) was applied to simulate pathological conditions. The aim was to investigate how these distinct types of blood flow regulated endothelial angiogenesis. Initially, we observed that DSS impaired angiogenesis and downregulated endogenous vascular endothelial growth factor B (VEGFB) expression compared to LSS. We further found that the changes in membrane protein, migration and invasion enhancer 1 (MIEN1) play a role in regulating ERK/MAPK signaling, thereby contributing to endothelial angiogenesis in response to FSS. We also showed the involvement of MIEN1-directed cytoskeleton organization. These findings suggest the significance of shear stress in endothelial angiogenesis, thereby enhancing our understanding of the alterations in angiogenesis that occur during the transition from physiological to pathological blood flow.


Asunto(s)
Angiogénesis , Células Endoteliales , Hemodinámica , Humanos , Aterosclerosis/patología , Células Cultivadas , Células Endoteliales/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Estrés Mecánico , Factor B de Crecimiento Endotelial Vascular/metabolismo
8.
J Am Chem Soc ; 146(27): 18650-18660, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38875499

RESUMEN

The acyl carrier protein of Escherichia coli, termed AcpP, is a prototypical example of type II fatty acid synthase systems found in many bacteria. It serves as a central hub by accepting diverse acyl moieties (4-18 carbons) and shuttling them between its multiple enzymatic partners to generate fatty acids. Prior structures of acyl-AcpPs established that thioester-linked acyl cargos are sequestered within AcpP's hydrophobic lumen. In contrast, structures of enzyme-bound acyl-AcpPs showed translocation of AcpP-tethered acyl chains into the active sites of enzymes. The mechanistic underpinnings of this conformational interplay, termed chain-flipping, are unclear. Here, using heteronuclear NMR spectroscopy, we reveal that AcpP-tethered acyl chains (6-10 carbons) spontaneously adopt lowly populated solvent-exposed conformations. To this end, we devised a new strategy to replace AcpP's thioester linkages with 15N-labeled amide bonds, which facilitated direct "visualization" of these excited states using NMR chemical exchange saturation transfer and relaxation dispersion measurements. Global fitting of the corresponding data yielded kinetic rate constants of the underlying equilibrium and populations and lifetimes of solvent-exposed states. The latter were influenced by acyl chain composition and ranged from milliseconds to submilliseconds for chains containing six, eight, and ten carbons, owing to their variable interactions with AcpP's hydrophobic core. Although transient, the exposure of AcpP-tethered acyl chains to the solvent may allow relevant enzymes to gain access to its active thioester, and the enzyme-induced selection of this conformation will culminate in the production of fatty acids.


Asunto(s)
Proteína Transportadora de Acilo , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/química , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Acido Graso Sintasa Tipo II
9.
Hum Genet ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117802

RESUMEN

Emerging variant effect predictors, protein language models (pLMs) learn evolutionary distribution of functional sequences to capture fitness landscape. Considering that variant effects are manifested through biological contexts beyond sequence (such as structure), we first assess how much structure context is learned in sequence-only pLMs and affecting variant effect prediction. And we establish a need to inject into pLMs protein structural context purposely and controllably. We thus introduce a framework of structure-informed pLMs (SI-pLMs), by extending masked sequence denoising to cross-modality denoising for both sequence and structure. Numerical results over deep mutagenesis scanning benchmarks show that our SI-pLMs, even when using smaller models and less data, are robustly top performers against competing methods including other pLMs, which shows that introducing biological context can be more effective at capturing fitness landscape than simply using larger models or bigger data. Case studies reveal that, compared to sequence-only pLMs, SI-pLMs can be better at capturing fitness landscape because (a) learned embeddings of low/high-fitness sequences can be more separable and (b) learned amino-acid distributions of functionally and evolutionarily conserved residues can be of much lower entropy, thus much more conserved, than other residues. Our SI-pLMs are applicable to revising any sequence-only pLMs through model architecture and training objectives. They do not require structure data as model inputs for variant effect prediction and only use structures as context provider and model regularizer during training.

10.
Hum Genet ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110250

RESUMEN

This paper presents an evaluation of predictions submitted for the "HMBS" challenge, a component of the sixth round of the Critical Assessment of Genome Interpretation held in 2021. The challenge required participants to predict the effects of missense variants of the human HMBS gene on yeast growth. The HMBS enzyme, critical for the biosynthesis of heme in eukaryotic cells, is highly conserved among eukaryotes. Despite the application of a variety of algorithms and methods, the performance of predictors was relatively similar, with Kendall's tau correlation coefficients between predictions and experimental scores around 0.3 for a majority of submissions. Notably, the median correlation (≥ 0.34) observed among these predictors, especially the top predictions from different groups, was greater than the correlation observed between their predictions and the actual experimental results. Most predictors were moderately successful in distinguishing between deleterious and benign variants, as evidenced by an area under the receiver operating characteristic (ROC) curve (AUC) of approximately 0.7 respectively. Compared with the recent two rounds of CAGI competitions, we noticed more predictors outperformed the baseline predictor, which is solely based on the amino acid frequencies. Nevertheless, the overall accuracy of predictions is still far short of positive control, which is derived from experimental scores, indicating the necessity for considerable improvements in the field. The most inaccurately predicted variants in this round were associated with the insertion loop, which is absent in many orthologs, suggesting the predictors still heavily rely on the information from multiple sequence alignment.

11.
Anal Chem ; 96(25): 10443-10450, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38864271

RESUMEN

Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations. It is thought that these performance reductions result from the competition between the two enzymatic processes driving the assay, namely, Cas-mediated cis-cleavage and polymerase-mediated amplification of the target DNA. Herein, we describe a novel one-pot RPA-Cas12a assay that circumvents this issue by leveraging in situ complexation of the target-specific sgRNA and Cas12a to purposefully limit the concentration of active Cas12a during the early stages of the assay. Using a clinically relevant assay against a DNA target for HPV-16, we show how this in situ format reduces competition between target cleavage and amplification and engenders significant improvements in detection limit when compared to the traditional one-pot assay format, even in patient-derived samples. Finally, to gain further insight into the assay, we use experimental data to formulate a mechanistic model describing the competition between the Cas enzyme and nucleic acid amplification. These findings suggest that purposefully limiting cis-cleavage rates of Cas proteins is a viable strategy for improving the performance of one-pot NAAT-CRISPR-Cas assays.


Asunto(s)
Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteínas Asociadas a CRISPR/metabolismo , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Humanos , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Técnicas de Amplificación de Ácido Nucleico , Proteína de Replicación A/metabolismo , Técnicas Biosensibles/métodos
12.
J Transl Med ; 22(1): 773, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152439

RESUMEN

BACKGROUND: The prevalence of chronic kidney disease (CKD) is on the rise, posing a significant public health challenge. Although gut microbiome dysbiosis has been implicated in the impairment of kidney functions, the existence of pathological subtypes-linked differences remains largely unknown. We aimed to characterize the intestinal microbiota in patients with membranous nephropathy (MN), IgA nephropathy (IgAN), minimal change disease (MCD), and ischemic renal injury (IRI) in order to investigate the intricate relationship between intestinal microbiota and CKD across different subtypes. METHODS: We conducted a cross-sectional study involving 94 patients with various pathological patterns of CKD and 54 healthy controls (HCs). The clinical parameters were collected, and stool samples were obtained from each participant. Gut microbial features were analyzed using 16S rRNA sequencing and taxon annotation to compare the HC, CKD, MN, IgAN, MCD, and IRI groups. RESULTS: The CKD subjects exhibited significantly reduced alpha diversity, modified community structures, and disrupted microbial composition and potential functions compared to the control group. The opportunistic pathogen Klebsiella exhibited a significant enrichment in patients with CKD, whereas Akkermansia showed higher abundance in HCs. The study further revealed the presence of heterogeneity in intestinal microbial signatures across diverse CKD pathological types, including MN, IgAN, MCD, and IRI. The depression of the family Lachnospiraceae and the genus Bilophila was prominently observed exclusively in patients with MN, while suppressed Streptococcus was detected only in individuals with MCD, and a remarkable expansion of the genus Escherichia was uniquely found in cases of IRI. The study also encompassed the development of classifiers employing gut microbial diagnostic markers to accurately discriminate between distinct subtypes of CKD. CONCLUSIONS: The dysregulation of gut microbiome was strongly correlated with CKD, exhibiting further specificity towards distinct pathological patterns. Our study emphasizes the significance of considering disease subtypes when assessing the impact of intestinal microbiota on the development, diagnosis, and treatment of CKD.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Adulto , ARN Ribosómico 16S/genética , Estudios Transversales , Disbiosis/microbiología , Disbiosis/complicaciones , Heces/microbiología
13.
J Transl Med ; 22(1): 280, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491511

RESUMEN

BACKGROUND: Ovarian cancer (OC) is distinguished by its aggressive nature and the limited efficacy of current treatment strategies. Recent studies have emphasized the significant role of cancer-associated fibroblasts (CAFs) in OC development and progression. METHODS: Employing sophisticated machine learning techniques on bulk transcriptomic datasets, we identified fibroblast growth factor 7 (FGF7), derived from CAFs, as a potential oncogenic factor. We investigated the relationship between FGF7 expression and various clinical parameters. A series of in vitro experiments were undertaken to evaluate the effect of CAFs-derived FGF7 on OC cell activities, such as proliferation, migration, and invasion. Single-cell transcriptomic analysis was also conducted to elucidate the interaction between FGF7 and its receptor. Detailed mechanistic investigations sought to clarify the pathways through which FGF7 fosters OC progression. RESULTS: Our findings indicate that higher FGF7 levels correlate with advanced tumor stages, increased vascular invasion, and poorer prognosis. CAFs-derived FGF7 significantly enhanced OC cell proliferation, migration, and invasion. Single-cell analysis and in vitro studies revealed that CAFs-derived FGF7 inhibits the ubiquitination and degradation of hypoxia-inducible factor 1 alpha (HIF-1α) via FGFR2 interaction. Activation of the FGF7/HIF-1α pathway resulted in the upregulation of mesenchymal markers and downregulation of epithelial markers. Importantly, in vivo treatment with neutralizing antibodies targeting CAFs-derived FGF7 substantially reduced tumor growth. CONCLUSION: Neutralizing FGF7 in the medium or inhibiting HIF-1α signaling reversed the effects of FGF7-mediated EMT, emphasizing the dependence of FGF7-mediated EMT on HIF-1α activation. These findings suggest that targeting the FGF7/HIF-1α/EMT axis may offer new therapeutic opportunities to intervene in OC progression.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Ováricas , Humanos , Femenino , Fibroblastos Asociados al Cáncer/metabolismo , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/farmacología , Línea Celular Tumoral , Transducción de Señal , Neoplasias Ováricas/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética
14.
J Transl Med ; 22(1): 289, 2024 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494492

RESUMEN

BACKGROUND: Global myopia prevalence poses a substantial public health burden with vision-threatening complications, necessitating effective prevention and control strategies. Precise prediction of spherical equivalent (SE), myopia, and high myopia onset is vital for proactive clinical interventions. METHODS: We reviewed electronic medical records of pediatric and adolescent patients who underwent cycloplegic refraction measurements at the Eye & Ear, Nose, and Throat Hospital of Fudan University between January 2005 and December 2019. Patients aged 3-18 years who met the inclusion criteria were enrolled in this study. To predict the SE and onset of myopia and high myopia in a specific year, two distinct models, random forest (RF) and the gradient boosted tree algorithm (XGBoost), were trained and validated based on variables such as age at baseline, and SE at various intervals. Outputs included SE, the onset of myopia, and high myopia up to 15 years post-initial examination. Age-stratified analyses and feature importance assessments were conducted to augment the clinical significance of the models. RESULTS: The study enrolled 88,250 individuals with 408,255 refraction records. The XGBoost-based SE prediction model consistently demonstrated robust and better performance than RF over 15 years, maintaining an R2 exceeding 0.729, and a Mean Absolute Error ranging from 0.078 to 1.802 in the test set. Myopia onset prediction exhibited strong area under the curve (AUC) values between 0.845 and 0.953 over 15 years, and high myopia onset prediction showed robust AUC values (0.807-0.997 over 13 years, with the 14th year at 0.765), emphasizing the models' effectiveness across age groups and temporal dimensions on the test set. Additionally, our classification models exhibited excellent calibration, as evidenced by consistently low brier score values, all falling below 0.25. Moreover, our findings underscore the importance of commencing regular examinations at an early age to predict high myopia. CONCLUSIONS: The XGBoost predictive models exhibited high accuracy in predicting SE, onset of myopia, and high myopia among children and adolescents aged 3-18 years. Our findings emphasize the importance of early and regular examinations at a young age for predicting high myopia, thereby providing valuable insights for clinical practice.


Asunto(s)
Miopía , Refracción Ocular , Adolescente , Niño , Preescolar , Humanos , Miopía/diagnóstico , Miopía/epidemiología
15.
Opt Express ; 32(8): 13946-13954, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859352

RESUMEN

Due to the wave nature of light, the diffraction pattern generated by an optical device is sensitive to the shift of wavelength. This fact significantly compromises the digital micromirror device (DMD) in applications, such as full-color holographic display and multi-color fluorescence microscopy. The existing dispersion compensation techniques for DMD involve adding diffractive elements, which causes a large amount of waste of optical energy. Here, we propose an energy-efficient dispersion compensation method, based on a dispersive prism, for DMD. This method simulates the diffraction pattern of the optical fields reflected from the DMD with an angular spectrum model. According to the simulation, a prism and a set of optical components are introduced to compensate for the angular dispersion of DMD-modulated optical fields. In the experiment, our method reduced the angular dispersion, between the 532 nm and 660 nm light beams, by a factor of ∼8.5.

16.
Neurobiol Learn Mem ; 208: 107890, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215963

RESUMEN

C-C chemokine receptor 5 (CCR5) is a chemokine receptor involved in immune responses and a co-receptor for HIV infection. Recently, CCR5 has also been reported to play a role in synaptic plasticity, learning and memory, and cognitive deficits associated with normal aging, traumatic brain injury (TBI), and HIV-associated neurocognitive disorder (HAND). In contrast, the role of CCR5 in cognitive deficits associated with other disorders, including Alzheimer's disease (AD), is much less understood. Studies have reported an increase in expression of CCR5 or its ligands in both AD patients and AD rodent models, suggesting a correlation between AD and CCR5 expression. However, whether blocking CCR5 in specific brain regions, such as the hippocampus, could improve memory deficits in AD mouse models is unknown. To study the potential causal role of CCR5 in cognitive deficits in AD, we injected soluble Aß1-42 or a control (Aß42-1) oligomers in the dorsal CA1 region of the hippocampus and found that Aß1-42 injection resulted in severe memory impairment in the object place recognition (OPR) and novel object recognition (NOR) tests. Aß1-42 injection caused an increase in Ccr5, Ccl3, and Ccl4 in the dorsal hippocampus, and the expression levels of CCR5 and its ligands remained elevated at 2 weeks after Aß1-42 injection. Knocking down Ccr5 in the CA1 region of dorsal hippocampus reversed the increase in microglia number and size in dorsal CA1 and rescued memory deficits. These results indicate that CCR5 plays an important role in modulating Aß1-42-induced learning and memory deficits, and suggest that CCR5 antagonists may serve as a potential treatment to improve cognitive deficits associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Infecciones por VIH , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Hipocampo/fisiología , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Aprendizaje , Trastornos de la Memoria/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Receptores CCR5/metabolismo , Receptores de Quimiocina/metabolismo
17.
Exp Eye Res ; 239: 109756, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135134

RESUMEN

PURPOSE: To investigate the long-term preservation effects of nutrient capsules on the physiological activity, collagen fiber structure and transmittance of corneal stromal lenticules derived from small incision lenticule extraction (SMILE). METHODS: A new nutrient capsule was constructed for long-term preservation of SMILE-derived corneal stromal lenticules. The lenticules were randomly divided into 99% anhydrous glycerol, and hydrogel nutrient capsules. After preserving for 1 year at -80 °C, lenticules were compared with fresh lenticules. The optical transmittance, tissue morphology, ultrastructure, cells activity and immunogenicity of the lenticules was detected and compared between different groups. RESULTS: The rate of apoptotic cells was significantly higher in the glycerol group compared with the nutrient capsule group (P < 0.0001). More viable cells were present in the lenticules after nutrient capsule preservation compared to the glycerol group (P = 0.0003). The mean transmittance of the lenticules in the glycerol group (50 ± 18%) was significantly lower (P = 0.0008) compared to the control group (75 ± 11%), and the lenticules transmittance of the nutrient capsule group (64 ± 15%) after long-term preservation was not significantly different (P = 0.23) compared to the control group. The structure of HE staining showed that the collagen fibers in the nutrient capsule group were arranged in parallel and neatly, and a few cavitation vesicles were visible inside the tissue. There was no significant difference in the number of lenticular collagen fibers in the nutritional capsule group compared to the fresh lenticule group (P = 0.06). HLA-DR, HLA-ABC, CD45, CD25 and CD69 expression was low in all groups of lenticules after preservation. CONCLUSIONS: Nutrient capsules can preserve lenticules for a long time and maintain the transmission structure and cells activity of lenticules.


Asunto(s)
Sustancia Propia , Glicerol , Glicerol/farmacología , Criopreservación , Colágeno/farmacología , Matriz Extracelular
18.
Exp Eye Res ; 239: 109786, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211681

RESUMEN

To investigate regional changes in the chick retina and choroid after hemifield form deprivation (HFD). Ten chicks were randomly and equally divided into a temporal retinal deprivation (TRD) and nasal retinal deprivation (NRD) group. HFD was induced with half-lateral translucent plastic goggles in the right eye; the left eye was kept untreated. Swept-source optical coherence tomography (SS-OCT) images obtained at 0, 3, and 72 hours (h) were analyzed using customized software. After 72 h of TRD, the retinal thickness (RT) of the treated eyes was significantly less than that of the fellow eyes in the temporal (P = 0.034) rather than the nasal (P = 0.083) region. In the NRD group, the RT of the treated eyes was thinner in both the nasal and temporal regions than that of the fellow eyes (P < 0.01). The RT alterations were more pronounced in the temporal (Δ = -16.86 ± 7.14 µm) than in the nasal (Δ = -13.44 ± 4.83 µm) region after 72-h TRD (P = 0.036), whereas the opposite was observed in the NRD group (P = 0.008). The choroidal thickness (ChT) of the treated eyes was less in both the nasal and temporal regions than that of the fellow eyes in both groups after 72-h treatment (P < 0.01). The ChT alterations were more pronounced in the temporal (Δ = -2.48 ± 8.95 µm) than in the nasal (Δ = 23.65 ± 13.58 µm) region after 72-h TRD (P = 0.021), whereas the NRD group showed the opposite effect (P = 0.019). HFD in chicks can lead to retinal and choroidal thinning in the corresponding regions.


Asunto(s)
Coroides , Retina , Animales , Pollos , Tomografía de Coherencia Óptica/métodos
19.
Mov Disord ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39149795

RESUMEN

BACKGROUND: Progressive supranuclear palsy (PSP) is largely a sporadic disease with few reported familial cases. Genome-wide association studies (GWAS) in sporadic PSP in Caucasian populations have identified MAPT as the most commonly associated genetic risk locus with the strongest effect size. At present there are limited data on genetic factors associated with PSP in Asian populations. OBJECTIVES: Our goal was to investigate the genetic factors associated with PSP in Southeast Asian PSP patients. METHODS: Next-generation sequencing (whole-exome, whole-genome and targeted sequencing) was performed in two Asian cohorts, comprising 177 PSP patients. RESULTS: We identified 17 pathogenic or likely pathogenic variants in 16 PSP patients (9%), eight of which were novel. The most common relevant genetic variants identified were in MAPT, GBA1, OPTN, SYNJ1, and SQSTM1. Other variants detected were in TBK1, PRNP, and ABCA7-genes that have been implicated in other neurodegenerative diseases. Eighteen patients had a positive family history, of whom two carried pathogenic MAPT variants, and one carried a likely pathogenic GBA1 variant. None of the patients had expanded repeats in C9orf72. Furthermore, we found 16 different variants of uncertain significance in 21 PSP patients in PSEN2, ABCA7, SMPD1, MAPT, ATP13A2, OPTN, SQSTM1, CYLD, and BSN. CONCLUSIONS: The genetic findings in our PSP cohorts appear to be somewhat distinct from those in Western populations, and also suggest an overlap of the genetic architecture between PSP and other neurodegenerative diseases. Further functional studies and validation in independent Asian cohorts will be useful for improving our understanding of PSP genetics and guiding genetic screening strategies in these populations. © 2024 International Parkinson and Movement Disorder Society.

20.
Mov Disord ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076159

RESUMEN

BACKGROUND: Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at a global scale. OBJECTIVE: To identify the multi-ancestry spectrum of monogenic PD. METHODS: The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's Monogenic Network took a different approach by targeting PD centers underrepresented or not yet represented in the medical literature. RESULTS: In this article, we describe combining both efforts in a merger project resulting in a global monogenic PD cohort with the buildup of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expressivity of monogenic PD. CONCLUSIONS: This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA