RESUMEN
We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from â¼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.
Asunto(s)
Sistemas CRISPR-Cas , Cromatina , Epigénesis Genética , Edición Génica , Humanos , Cromatina/metabolismo , Cromatina/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Histonas/metabolismo , Factores de Transcripción/metabolismo , Código de HistonasRESUMEN
Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.
Asunto(s)
Diferenciación Celular , Factores de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Humanos , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ligandos , Calcio/metabolismo , Sistema de Señalización de MAP QuinasasRESUMEN
Single-cell biology is facing a crisis of sorts. Vast numbers of single-cell molecular profiles are being generated, clustered and annotated. However, this is overwhelmingly ad hoc, and we continue to lack a principled, unified, and well-moored system for defining, naming, and organizing cell types. In this perspective, we argue against an atlas or periodic table-like discretization as the right metaphor for a reference taxonomy of cell types. In its place, we advocate for a data-driven, tree-based nomenclature that is rooted in a "consensus ontogeny" spanning the life cycle of a given species. We explore how such a reference cell tree, inclusive of both lineage histories and molecular states, could be constructed, represented, and segmented in practice. Analogous to the taxonomic classification of species, a consensus ontogeny would provide a universal, stable, and extendable framework for precise scientific communication, both contemporaneously and across the ages.
Asunto(s)
Citología , Comunicación , Estadios del Ciclo de Vida , Filogenia , Análisis de la Célula IndividualRESUMEN
Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.
Asunto(s)
Proteostasis , Pez Cebra , Animales , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Temperatura , Pez Cebra/crecimiento & desarrolloRESUMEN
In the wake of the Human Genome Project (HGP), strong expectations were set for the timeline and impact of genomics on medicine-an anticipated transformation in the diagnosis, treatment, and prevention of disease. In this Perspective, we take stock of the nascent field of genomic medicine. In what areas, if any, is genomics delivering on this promise, or is the path to success clear? Where are we falling short, and why? What have been the unanticipated developments? Overall, we argue that the optimism surrounding the transformational potential of genomics on medicine remains justified, albeit with a considerably different form and timescale than originally projected. We also argue that the field needs to pivot back to basics, as understanding the entirety of the genotype-to-phenotype equation is a likely prerequisite for delivering on the full potential of the human genome to advance the human condition.
Asunto(s)
Genoma Humano/genética , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Pruebas Genéticas , Genómica/métodos , Genómica/tendencias , Proyecto Genoma Humano , HumanosRESUMEN
Over one million candidate regulatory elements have been identified across the human genome, but nearly all are unvalidated and their target genes uncertain. Approaches based on human genetics are limited in scope to common variants and in resolution by linkage disequilibrium. We present a multiplex, expression quantitative trait locus (eQTL)-inspired framework for mapping enhancer-gene pairs by introducing random combinations of CRISPR/Cas9-mediated perturbations to each of many cells, followed by single-cell RNA sequencing (RNA-seq). Across two experiments, we used dCas9-KRAB to perturb 5,920 candidate enhancers with no strong a priori hypothesis as to their target gene(s), measuring effects by profiling 254,974 single-cell transcriptomes. We identified 664 (470 high-confidence) cis enhancer-gene pairs, which were enriched for specific transcription factors, non-housekeeping status, and genomic and 3D conformational proximity to their target genes. This framework will facilitate the large-scale mapping of enhancer-gene regulatory interactions, a critical yet largely uncharted component of the cis-regulatory landscape of the human genome.
Asunto(s)
Mapeo Cromosómico/métodos , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Sitios de Carácter Cuantitativo , Factores de Transcripción/genéticaRESUMEN
The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.
Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Epigénesis Genética , Células Clonales , Memoria Inmunológica , Diferenciación CelularRESUMEN
We applied a combinatorial indexing assay, sci-ATAC-seq, to profile genome-wide chromatin accessibility in â¼100,000 single cells from 13 adult mouse tissues. We identify 85 distinct patterns of chromatin accessibility, most of which can be assigned to cell types, and â¼400,000 differentially accessible elements. We use these data to link regulatory elements to their target genes, to define the transcription factor grammar specifying each cell type, and to discover in vivo correlates of heterogeneity in accessibility within cell types. We develop a technique for mapping single cell gene expression data to single-cell chromatin accessibility data, facilitating the comparison of atlases. By intersecting mouse chromatin accessibility with human genome-wide association summary statistics, we identify cell-type-specific enrichments of the heritability signal for hundreds of complex traits. These data define the in vivo landscape of the regulatory genome for common mammalian cell types at single-cell resolution.
Asunto(s)
Cromatina/química , Análisis de la Célula Individual/métodos , Animales , Análisis por Conglomerados , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Factores de TranscripciónRESUMEN
We analyze whole-genome sequencing data from 141,431 Chinese women generated for non-invasive prenatal testing (NIPT). We use these data to characterize the population genetic structure and to investigate genetic associations with maternal and infectious traits. We show that the present day distribution of alleles is a function of both ancient migration and very recent population movements. We reveal novel phenotype-genotype associations, including several replicated associations with height and BMI, an association between maternal age and EMB, and between twin pregnancy and NRG1. Finally, we identify a unique pattern of circulating viral DNA in plasma with high prevalence of hepatitis B and other clinically relevant maternal infections. A GWAS for viral infections identifies an exceptionally strong association between integrated herpesvirus 6 and MOV10L1, which affects piwi-interacting RNA (piRNA) processing and PIWI protein function. These findings demonstrate the great value and potential of accumulating NIPT data for worldwide medical and genetic analyses.
Asunto(s)
Pueblo Asiatico/genética , Diagnóstico Prenatal/métodos , Adulto , Alelos , China , ADN/genética , Etnicidad/genética , Femenino , Frecuencia de los Genes/genética , Pruebas Genéticas , Variación Genética/genética , Genética de Población/métodos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Migración Humana , Humanos , Embarazo , Análisis de Secuencia de ADNRESUMEN
Nucleosome positioning varies between cell types. By deep sequencing cell-free DNA (cfDNA), isolated from circulating blood plasma, we generated maps of genome-wide in vivo nucleosome occupancy and found that short cfDNA fragments harbor footprints of transcription factors. The cfDNA nucleosome occupancies correlate well with the nuclear architecture, gene structure, and expression observed in cells, suggesting that they could inform the cell type of origin. Nucleosome spacing inferred from cfDNA in healthy individuals correlates most strongly with epigenetic features of lymphoid and myeloid cells, consistent with hematopoietic cell death as the normal source of cfDNA. We build on this observation to show how nucleosome footprints can be used to infer cell types contributing to cfDNA in pathological states such as cancer. Since this strategy does not rely on genetic differences to distinguish between contributing tissues, it may enable the noninvasive monitoring of a much broader set of clinical conditions than currently possible.
Asunto(s)
ADN/química , Nucleosomas/química , Especificidad de Órganos , Factor de Unión a CCCTC , Línea Celular , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Huella de ADN , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias/genética , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADNRESUMEN
The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.
Asunto(s)
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismoRESUMEN
Most human transcripts are alternatively spliced, and many disease-causing mutations affect RNA splicing. Toward better modeling the sequence determinants of alternative splicing, we measured the splicing patterns of over two million (M) synthetic mini-genes, which include degenerate subsequences totaling over 100 M bases of variation. The massive size of these training data allowed us to improve upon current models of splicing, as well as to gain new mechanistic insights. Our results show that the vast majority of hexamer sequence motifs measurably influence splice site selection when positioned within alternative exons, with multiple motifs acting additively rather than cooperatively. Intriguingly, motifs that enhance (suppress) exon inclusion in alternative 5' splicing also enhance (suppress) exon inclusion in alternative 3' or cassette exon splicing, suggesting a universal mechanism for alternative exon recognition. Finally, our empirically trained models are highly predictive of the effects of naturally occurring variants on alternative splicing in vivo.
Asunto(s)
Empalme Alternativo , Genoma Humano , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Motivos de Nucleótidos , Sitios de Empalme de ARNRESUMEN
Measurements of gene expression or signal transduction activity are conventionally performed using methods that require either the destruction or live imaging of a biological sample within the timeframe of interest. Here we demonstrate an alternative paradigm in which such biological activities are stably recorded to the genome. Enhancer-driven genomic recording of transcriptional activity in multiplex (ENGRAM) is based on the signal-dependent production of prime editing guide RNAs that mediate the insertion of signal-specific barcodes (symbols) into a genomically encoded recording unit. We show how this strategy can be used for multiplex recording of the cell-type-specific activities of dozens to hundreds of cis-regulatory elements with high fidelity, sensitivity and reproducibility. Leveraging signal transduction pathway-responsive cis-regulatory elements, we also demonstrate time- and concentration-dependent genomic recording of WNT, NF-κB and Tet-On activities. By coupling ENGRAM to sequential genome editing via DNA Typewriter1, we stably record information about the temporal dynamics of two orthogonal signalling pathways to genomic DNA. Finally we apply ENGRAM to integratively record the transient activity of nearly 100 transcription factor consensus motifs across daily windows spanning the differentiation of mouse embryonic stem cells into gastruloids, an in vitro model of early mammalian development. Although these are proof-of-concept experiments and much work remains to fully realize the possibilities, the symbolic recording of biological signals or states within cells, to the genome and over time, has broad potential to complement contemporary paradigms for how we make measurements in biological systems.
Asunto(s)
ADN , Edición Génica , Transducción de Señal , Transcripción Genética , Animales , Ratones , Diferenciación Celular/genética , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Edición Génica/métodos , Genómica , Células Madre Embrionarias de Ratones/citología , FN-kappa B/metabolismo , Reproducibilidad de los Resultados , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Vía de Señalización Wnt/genética , Motivos de Nucleótidos , Secuencia de Consenso/genética , Biología Evolutiva , Prueba de Estudio ConceptualRESUMEN
The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.
Asunto(s)
Animales Recién Nacidos , Embrión de Mamíferos , Desarrollo Embrionario , Gástrula , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos/embriología , Animales Recién Nacidos/genética , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Gástrula/citología , Gástrula/embriología , Gastrulación/genética , Riñón/citología , Riñón/embriología , Mesodermo/citología , Mesodermo/enzimología , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/embriología , Somitos/citología , Somitos/embriología , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Especificidad de Órganos/genéticaRESUMEN
Genome replication programs are highly orchestrated. In this issue, Koren and colleagues leverage whole-genome sequencing data to discover that DNA replication timing patterns differ between individuals and are associated with genetic variants. These so-called rtQTLs represent a new form of quantitative trait loci that may influence gene dosage and mutational frequency and provide mechanistic insights into the regulation of DNA replication.
Asunto(s)
Polimorfismo Genético , Sitios de Carácter Cuantitativo , HumanosRESUMEN
Autism spectrum disorder (ASD) is a heterogeneous disease in which efforts to define subtypes behaviorally have met with limited success. Hypothesizing that genetically based subtype identification may prove more productive, we resequenced the ASD-associated gene CHD8 in 3,730 children with developmental delay or ASD. We identified a total of 15 independent mutations; no truncating events were identified in 8,792 controls, including 2,289 unaffected siblings. In addition to a high likelihood of an ASD diagnosis among patients bearing CHD8 mutations, characteristics enriched in this group included macrocephaly, distinct faces, and gastrointestinal complaints. chd8 disruption in zebrafish recapitulates features of the human phenotype, including increased head size as a result of expansion of the forebrain/midbrain and impairment of gastrointestinal motility due to a reduction in postmitotic enteric neurons. Our findings indicate that CHD8 disruptions define a distinct ASD subtype and reveal unexpected comorbidities between brain development and enteric innervation.
Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/fisiopatología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Adolescente , Secuencia de Aminoácidos , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Niño , Trastornos Generalizados del Desarrollo Infantil/clasificación , Trastornos Generalizados del Desarrollo Infantil/patología , Preescolar , Proteínas de Unión al ADN/metabolismo , Femenino , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiopatología , Humanos , Macaca mulatta , Masculino , Megalencefalia/patología , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The human embryo undergoes morphogenetic transformations following implantation into the uterus, but our knowledge of this crucial stage is limited by the inability to observe the embryo in vivo. Models of the embryo derived from stem cells are important tools for interrogating developmental events and tissue-tissue crosstalk during these stages1. Here we establish a model of the human post-implantation embryo, a human embryoid, comprising embryonic and extraembryonic tissues. We combine two types of extraembryonic-like cell generated by overexpression of transcription factors with wild-type embryonic stem cells and promote their self-organization into structures that mimic several aspects of the post-implantation human embryo. These self-organized aggregates contain a pluripotent epiblast-like domain surrounded by extraembryonic-like tissues. Our functional studies demonstrate that the epiblast-like domain robustly differentiates into amnion, extraembryonic mesenchyme and primordial germ cell-like cells in response to bone morphogenetic protein cues. In addition, we identify an inhibitory role for SOX17 in the specification of anterior hypoblast-like cells2. Modulation of the subpopulations in the hypoblast-like compartment demonstrates that extraembryonic-like cells influence epiblast-like domain differentiation, highlighting functional tissue-tissue crosstalk. In conclusion, we present a modular, tractable, integrated3 model of the human embryo that will enable us to probe key questions of human post-implantation development, a critical window during which substantial numbers of pregnancies fail.
Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Modelos Biológicos , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Proteínas Morfogenéticas Óseas , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Cuerpos Embrioides/citología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Pluripotentes/citologíaRESUMEN
The maturation of single-cell transcriptomic technologies has facilitated the generation of comprehensive cellular atlases from whole embryos1-4. A majority of these data, however, has been collected from wild-type embryos without an appreciation for the latent variation that is present in development. Here we present the 'zebrafish single-cell atlas of perturbed embryos': single-cell transcriptomic data from 1,812 individually resolved developing zebrafish embryos, encompassing 19 timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of replication in our study (eight or more embryos per condition) enables us to estimate the variance in cell type abundance organism-wide and to detect perturbation-dependent deviance in cell type composition relative to wild-type embryos. Our approach is sensitive to rare cell types, resolving developmental trajectories and genetic dependencies in the cranial ganglia neurons, a cell population that comprises less than 1% of the embryo. Additionally, time-series profiling of individual mutants identified a group of brachyury-independent cells with strikingly similar transcriptomes to notochord sheath cells, leading to new hypotheses about early origins of the skull. We anticipate that standardized collection of high-resolution, organism-scale single-cell data from large numbers of individual embryos will enable mapping of the genetic dependencies of zebrafish cell types, while also addressing longstanding challenges in developmental genetics, including the cellular and transcriptional plasticity underlying phenotypic diversity across individuals.
Asunto(s)
Embrión de Mamíferos , Genética Inversa , Análisis de la Célula Individual , Pez Cebra , Animales , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genética Inversa/métodos , Transcriptoma/genética , Pez Cebra/embriología , Pez Cebra/genética , Mutación , Análisis de la Célula Individual/métodos , Notocorda/citología , Notocorda/embriologíaRESUMEN
Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.