Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 195(1): 479-501, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227428

RESUMEN

Flowering is an essential process in fruit trees. Flower number and timing have a substantial impact on the yield and maturity of fruit. Ethylene and gibberellin (GA) play vital roles in flowering, but the mechanism of coordinated regulation of flowering in woody plants by GA and ethylene is still unclear. In this study, a lemon (Citrus limon L. Burm) 1-aminocyclopropane-1-carboxylic acid synthase gene (CiACS4) was overexpressed in Nicotiana tabacum and resulted in late flowering and increased flower number. Further transformation of citrus revealed that ethylene and starch content increased, and soluble sugar content decreased in 35S:CiACS4 lemon. Inhibition of CiACS4 in lemon resulted in effects opposite to that of 35S:CiACS4 in transgenic plants. Overexpression of the CiACS4-interacting protein ETHYLENE RESPONSE FACTOR3 (CiERF3) in N. tabacum resulted in delayed flowering and more flowers. Further experiments revealed that the CiACS4-CiERF3 complex can bind the promoters of FLOWERING LOCUS T (CiFT) and GOLDEN2-LIKE (CiFE) and suppress their expression. Moreover, overexpression of CiFE in N. tabacum led to early flowering and decreased flowers, and ethylene, starch, and soluble sugar contents were opposite to those in 35S:CiACS4 transgenic plants. Interestingly, CiFE also bound the promoter of CiFT. Additionally, GA3 and 1-aminocyclopropanecarboxylic acid (ACC) treatments delayed flowering in adult citrus, and treatment with GA and ethylene inhibitors increased flower number. ACC treatment also inhibited the expression of CiFT and CiFE. This study provides a theoretical basis for the application of ethylene to regulate flower number and mitigate the impacts of extreme weather on citrus yield due to delayed flowering.


Asunto(s)
Citrus , Etilenos , Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Giberelinas/metabolismo , Citrus/genética , Citrus/fisiología , Citrus/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/crecimiento & desarrollo , Liasas/metabolismo , Liasas/genética
2.
Proc Natl Acad Sci U S A ; 119(34): e2208060119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972962

RESUMEN

As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.


Asunto(s)
Técnicas Biosensibles , Óxido Nítrico , Osteoartritis , Tecnología Inalámbrica , Animales , Técnicas Biosensibles/métodos , Enfermedad Crónica , Diagnóstico Precoz , Técnicas Electroquímicas/métodos , Electrodos , Óxido Nítrico/análisis , Osteoartritis/diagnóstico , Conejos
3.
Plant Physiol ; 192(3): 1947-1968, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36913259

RESUMEN

Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.


Asunto(s)
Citrus , Giberelinas , Giberelinas/farmacología , Giberelinas/metabolismo , Citrus/genética , Citrus/metabolismo , Etilenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(18)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33903240

RESUMEN

Inorganic semiconductor-based microscale light-emitting diodes (micro-LEDs) have been widely considered the key solution to next-generation, ubiquitous lighting and display systems, with their efficiency, brightness, contrast, stability, and dynamic response superior to liquid crystal or organic-based counterparts. However, the reduction of micro-LED sizes leads to the deteriorated device performance and increased difficulties in manufacturing. Here, we report a tandem device scheme based on stacked red, green, and blue (RGB) micro-LEDs, for the realization of full-color lighting and displays. Thin-film micro-LEDs (size ∼100 µm, thickness ∼5 µm) based on III-V compound semiconductors are vertically assembled via epitaxial liftoff and transfer printing. A thin-film dielectric-based optical filter serves as a wavelength-selective interface for performance enhancement. Furthermore, we prototype arrays of tandem RGB micro-LEDs and demonstrate display capabilities. These materials and device strategies provide a viable path to advanced lighting and display systems.

5.
Nano Lett ; 23(24): 11693-11701, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38018768

RESUMEN

Three-dimensional (3D) electronic systems with their potential for enhanced functionalities often require complex fabrication processes. This paper presents a water-based, stimuli-responsive approach for creating self-assembled 3D electronic systems, particularly suited for biorelated applications. We utilize laser scribing to programmatically shape a water-responsive bilayer, resulting in smart 3D electronic substrates. Control over the deformation direction, actuation time, and surface curvature of rolling structures is achieved by adjusting laser-scribing parameters, as validated through experiments and numerical simulations. Additionally, self-locking structures maintain the integrity of the 3D systems. This methodology enables the implementation of spiral twining electrodes for electrophysiological signal monitoring in plants. Furthermore, the integration of self-rolling electrodes onto peripheral nerves in a rodent model allows for stimulation and recording of in vivo neural activities with excellent biocompatibility. These innovations provide viable paths to next-generation 3D biointegrated electronic systems for life science studies and medical applications.


Asunto(s)
Electrónica , Agua , Electrodos , Nervios Periféricos , Fenómenos Electrofisiológicos
6.
J Endovasc Ther ; : 15266028231197602, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37675790

RESUMEN

PURPOSE: The objective was to determine the effectiveness and safety of paclitaxel-coated balloon angioplasty in hemodialysis patients with diabetic nephropathy (DN). MATERIALS AND METHODS: The outcomes of end-stage renal disease (ESRD) patients with peripheral artery disease (PAD) and treated with drug-coated balloon (DCB) angioplasty were retrospectively evaluated. The effectiveness outcomes were clinical improvement of the Rutherford classification and target lesion revascularization (TLR). Safety outcomes were all-cause mortality and amputation. RESULTS: Ninety-seven patients were treated with DCB angioplasty between December 2018 and December 2020. 87 (63.8±10.1 years) achieved technical success. Most patients had a Rutherford classification of at least grade 4. The mean lesion length was 169.8±73.8 mm, almost all had arterial calcification, and 31.0% had annular calcification. Wounds were present in 73.6% of the target limbs. The mean follow-up in this cohort was 13.4±7.4 months. The wound healing rate was 61.5% at the 12-month follow-up. All-cause mortality during 12 months of follow-up was 35.6%, amputation-free survival was 58.6%, and TLR was observed in 13 (15.3%) patients. At 3 and 12 months of follow-up, the Rutherford grade significantly improved (p<0.001). The Cox proportional hazards model revealed that wounds (hazard ratio [HR]=1.404, p=0.023) and annular calcification (HR=2.076, p=0.031) were independent predictors of amputation-free survival. CONCLUSIONS: Drug-coated balloon angioplasty in ESRD patients was effective and safe over the medium term. Wounds and annular calcification were independent predictors of amputation-free survival. CLINICAL IMPACT: The effectiveness of DCB angioplasty in ESRD patients and the factors affecting major outcome prognosis in this population remain limited. This study contributes valuable insights into the effectiveness and safety of paclitaxel-coated balloon angioplasty for PAD in hemodialysis patients. Medical professionals can now regard DCB angioplasty as a viable treatment. Identifying wound presence and annular calcification as predictors of amputation-free survival equips medical practitioners with a more tailored approach to patient management, potentially resulting in enhanced outcomes and more precise treatment strategies.

7.
J Org Chem ; 87(2): 1366-1376, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34964647

RESUMEN

An efficient catalytic protocol based on reusable MgAl-layered double hydroxides has been developed for the synthesis of multi-functionalized oxazolines via the cyclocondensation of amidines and aminoalcohols. The developed method has a broad substrate scope and excellent functional group tolerance and uses a reusable catalyst. The catalyst can be conveniently recycled by filtration and reused for at least five times without obvious deactivation. Additionally, the selective ortho C-H silylation of oxazolines was performed using Ru(II) as the catalyst and triethyl silane as the silylating reagent, which proved to be a convenient and practical method for the synthesis of versatile organosilyl-functionalized oxazolines with advantageous biological and physical properties.


Asunto(s)
Amidinas , Hidróxidos , Amino Alcoholes , Catálisis
8.
Proc Natl Acad Sci U S A ; 116(31): 15398-15406, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308234

RESUMEN

Flexible biocompatible electronic systems that leverage key materials and manufacturing techniques associated with the consumer electronics industry have potential for broad applications in biomedicine and biological research. This study reports scalable approaches to technologies of this type, where thin microscale device components integrate onto flexible polymer substrates in interconnected arrays to provide multimodal, high performance operational capabilities as intimately coupled biointerfaces. Specificially, the material options and engineering schemes summarized here serve as foundations for diverse, heterogeneously integrated systems. Scaled examples incorporate >32,000 silicon microdie and inorganic microscale light-emitting diodes derived from wafer sources distributed at variable pitch spacings and fill factors across large areas on polymer films, at full organ-scale dimensions such as human brain, over ∼150 cm2 In vitro studies and accelerated testing in simulated biofluids, together with theoretical simulations of underlying processes, yield quantitative insights into the key materials aspects. The results suggest an ability of these systems to operate in a biologically safe, stable fashion with projected lifetimes of several decades without leakage currents or reductions in performance. The versatility of these combined concepts suggests applicability to many classes of biointegrated semiconductor devices.

9.
Sensors (Basel) ; 22(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35161547

RESUMEN

Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.


Asunto(s)
Electrónica , Silicio , Técnicas de Cultivo de Célula , Indicadores y Reactivos
10.
Angew Chem Int Ed Engl ; 61(23): e202202633, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35319804

RESUMEN

Surface chemistry mediated direct optical patterning represents an emerging strategy for incorporating colloidal nanocrystals (NCs) in integrated optoelectronic platforms including displays and image sensors. However, the role of photochemistry of crosslinkers and other photoactive species in patterning remains elusive. Here we show the design of nitrene- and carbene-based photocrosslinkers can strongly affect the patterning capabilities and photophysical properties of NCs, especially quantum dots (QDs). Their role beyond physical linkers stems from structure-dictated electronic configuration, energy alignment and associated reaction kinetics and thermodynamics. Patterned QD layers with designed carbene-based crosslinkers fully preserve their photoluminescent and electroluminescent properties. Patterned light emitting diodes (QLEDs) show a maximum external quantum efficiency of ≈12 % and lifetime over 4800 h, among the highest for reported patterned QLEDs. These results would guide the rational design of photoactive species in NC patterning and create new possibilities in the monolithic integration of NCs in high-performance device platforms.

11.
J Pharmacol Exp Ther ; 379(2): 156-165, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34465632

RESUMEN

Acute respiratory distress syndrome (ARDS), a common and fatal clinical condition, is characterized by the destruction of epithelium and augmented permeability of the alveolar-capillary barrier. Resolvin conjugates in tissue regeneration 1 (RCTR1) is an endogenous lipid mediator derived from docosahexaenoic acid , exerting proresolution effects in the process of inflammation. In our research, we evaluated the role of RCTR1 in alveolar fluid clearance (AFC) in lipopolysaccharide-induced ARDS/acute lung injury (ALI) rat model. Rats were injected with RCTR1 (5 µg/kg) via caudal veins 8 hours after lipopolysaccharide (LPS) (14 mg/kg) treatment, and then AFC was estimated after 1 hour of ventilation. Primary type II alveolar epithelial cells were incubated with LPS (1 ug/ml) with or without RCTR1 (10 nM) for 8 hours. Our results showed that RCTR1 significantly enhanced the survival rate, promoted the AFC, and alleviated LPS-induced ARDS/ALI in vivo. Furthermore, RCTR1 remarkably elevated the protein expression of sodium channels and Na, K-ATPase and the activity of Na, K-ATPase in vivo and in vitro. Additionally, RCTR1 also decreased neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) level via upregulating Ser473-phosphorylated-Akt expression. Besides this, inhibitors of receptor for lipoxin A4 (ALX), cAMP, and phosphatidylinositol 3-kinase (PI3K) (BOC-2, KH-7, and LY294002) notably inhibited the effects of RCTR1 on AFC. In summary, RCTR1 enhances the protein levels of sodium channels and Na, K-ATPase and the Na, K-ATPase activity to improve AFC in ALI through ALX/cAMP/PI3K/Nedd4-2 pathway, suggesting that RCTR1 may become a therapeutic drug for ARDS/ALI. SIGNIFICANCE STATEMENT: RCTR1, an endogenous lipid mediator, enhanced the rate of AFC to accelerate the resolution of inflammation in the LPS-induced murine lung injury model. RCTR1 upregulates the expression of epithelial sodium channels (ENaCs) and Na, K-ATPase in vivo and in vitro to accelerate the AFC. The efficacy of RCTR1 on the ENaC and Na, K-ATPase level was in an ALX/cAMP/PI3K/Nedd4-2-dependent manner.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Ácidos Docosahexaenoicos/farmacología , Agonistas del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/metabolismo , Alveolos Pulmonares/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Ácidos Docosahexaenoicos/análogos & derivados , Ácidos Docosahexaenoicos/uso terapéutico , Lipopolisacáridos/toxicidad , Masculino , Alveolos Pulmonares/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
12.
Proc Natl Acad Sci U S A ; 115(7): E1374-E1383, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378934

RESUMEN

Capabilities for recording neural activity in behaving mammals have greatly expanded our understanding of brain function. Some of the most sophisticated approaches use light delivered by an implanted fiber-optic cable to optically excite genetically encoded calcium indicators and to record the resulting changes in fluorescence. Physical constraints induced by the cables and the bulk, size, and weight of the associated fixtures complicate studies on natural behaviors, including social interactions and movements in environments that include obstacles, housings, and other complex features. Here, we introduce a wireless, injectable fluorescence photometer that integrates a miniaturized light source and a photodetector on a flexible, needle-shaped polymer support, suitable for injection into the deep brain at sites of interest. The ultrathin geometry and compliant mechanics of these probes allow minimally invasive implantation and stable chronic operation. In vivo studies in freely moving animals demonstrate that this technology allows high-fidelity recording of calcium fluorescence in the deep brain, with measurement characteristics that match or exceed those associated with fiber photometry systems. The resulting capabilities in optical recordings of neuronal dynamics in untethered, freely moving animals have potential for widespread applications in neuroscience research.


Asunto(s)
Encéfalo/fisiología , Estimulación Encefálica Profunda/métodos , Neuronas/fisiología , Optogenética/instrumentación , Estimulación Luminosa/instrumentación , Tecnología Inalámbrica , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Ópticas
13.
Proc Natl Acad Sci U S A ; 115(26): 6632-6637, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891705

RESUMEN

Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.


Asunto(s)
Miniaturización , Optogenética/instrumentación , Prótesis e Implantes , Animales , Arsenicales , Conducta Animal , Materiales Biocompatibles , Mapeo Encefálico/instrumentación , Diseño de Equipo , Galio , Rayos Infrarrojos , Ratones , Ratones Desnudos , Optogenética/métodos , Fotones , Ratas , Semiconductores , Corteza Somatosensorial/fisiología , Tejido Subcutáneo
14.
J Cell Mol Med ; 24(18): 10604-10614, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32735065

RESUMEN

Inflammatory cell infiltration contributes to the pathogenesis of acute respiratory distress syndrome (ARDS). Protectin DX (PDX), an endogenous lipid mediator, shows anti-inflammatory and proresolution bioactions. In vivo, the mice were intraperitoneally injected with PDX (0.1 µg/mouse) after intratracheal (1 mg/kg) or intraperitoneal (10 mg/kg) LPS administration. Flow cytometry was used to measure inflammatory cell numbers. Clodronate liposomes were used to deplete resident macrophages. RT-PCR, and ELISA was used to measure MIP-2, MCP-1, TNF-α and MMP9 levels. In vitro, sorted neutrophils, resident and recruited macrophages (1 × 106 ) were cultured with 1 µg/mL LPS and/or 100 nmol/L PDX to assess the chemokine receptor expression. PDX attenuated LPS-induced lung injury via inhibiting recruited macrophage and neutrophil recruitment through repressing resident macrophage MCP-1, MIP-2 expression and release, respectively. Finally, PDX inhibition of neutrophil infiltration and transmembrane was associated with TNF-α/MIP-2/MMP9 signalling pathway. These data suggest that PDX attenuates LPS-stimulated lung injury via reduction of the inflammatory cell recruitment mediated via resident macrophages.


Asunto(s)
Lesión Pulmonar Aguda/patología , Ácidos Docosahexaenoicos/uso terapéutico , Macrófagos/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Administración Intranasal , Animales , Quimiocina CCL2/biosíntesis , Quimiocina CCL2/genética , Quimiocina CXCL2/biosíntesis , Quimiocina CXCL2/genética , Quimiocina CXCL2/fisiología , Quimiotaxis de Leucocito/efectos de los fármacos , Ácido Clodrónico/administración & dosificación , Ácido Clodrónico/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/fisiología , Inflamación , Inyecciones Intraperitoneales , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Liposomas , Macrófagos/fisiología , Metaloproteinasa 9 de la Matriz/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Receptores CCR2/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Migración Transendotelial y Transepitelial/efectos de los fármacos , Factor de Necrosis Tumoral alfa/fisiología
15.
J Cell Mol Med ; 24(17): 9646-9657, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757380

RESUMEN

Acute respiratory distress syndrome (ARDS) is a fatal disease characterized by excessive infiltration of inflammatory cells. MCTR1 is an endogenously pro-resolution lipid mediator. We tested the hypothesis that MCTR1 accelerates inflammation resolution through resident M2 alveolar macrophage polarization. The mice received MCTR1 via intraperitoneal administration 3 days after LPS stimulation, and then, the bronchoalveolar lavage (BAL) fluid was collected 24 hours later to measure the neutrophil numbers. Flow cytometry was used to sort the resident and recruited macrophages. Post-treatment with MCTR1 offered dramatic benefits in the resolution phase of LPS-induced lung injury, including decreased neutrophil numbers, reduced BAL fluid protein and albumin concentrations and reduced histological injury. In addition, the expression of the M2 markers Arg1, FIZZ1, Remlα, CD206 and Dectin-1 was increased on resident macrophages in the LPS + MCTR1 group. Resident macrophage depletion abrogated the therapeutic effects of MCTR1, and reinjection of the sorted resident macrophages into the lung decreased neutrophil numbers. Finally, treatment with MCTR1 increased STAT6 phosphorylation. The STAT6 inhibitor AS1517499 abolished the beneficial effects of MCTR1. In conclusion, MCTR1 promotes resident M2 alveolar macrophage polarization via the STAT6 pathway to accelerate resolution of LPS-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Polaridad Celular/fisiología , Lipopolisacáridos/farmacología , Macrófagos Alveolares/metabolismo , Proteínas Oncogénicas/metabolismo , Factor de Transcripción STAT6/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Inflamación/metabolismo , Pulmón/metabolismo , Activación de Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Transducción de Señal/fisiología
16.
J Cell Mol Med ; 24(23): 14001-14012, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33098250

RESUMEN

Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) is histologically characterized by extensive alveolar barrier disruption and excessive fibroproliferation responses. Protectin DX (PDX) displays anti-inflammatory and potent inflammation pro-resolving actions. We sought to investigate whether PDX attenuates LPS (lipopolysaccharide)-induced lung injury via modulating epithelial cell injury repair, apoptosis and fibroblasts activation. In vivo, PDX was administered intraperitoneally (IP) with 200 ng/per mouse after intratracheal injection of LPS, which remarkedly stimulated proliferation of type II alveolar epithelial cells (AT II cells), reduced the apoptosis of AT II cells, which attenuated lung injury induced by LPS. Moreover, primary type II alveolar cells were isolated and cultured to assess the effects of PDX on wound repair, apoptosis, proliferation and transdifferentiation in vitro. We also investigated the effects of PDX on primary rat lung fibroblast proliferation and myofibroblast differentiation. Our result suggests PDX promotes primary AT II cells wound closure by inducing the proliferation of AT II cells and reducing the apoptosis of AT II cells induced by LPS, and promotes AT II cells transdifferentiation. Furthermore, PDX inhibits transforming growth factor-ß1 (TGF-ß1 ) induced fibroproliferation, fibroblast collagen production and myofibroblast transformation. Furthermore, the effects of PDX on epithelial wound healing and proliferation, fibroblast proliferation and activation partly via the ALX/ PI3K signalling pathway. These data present identify a new mechanism of PDX which targets the airway epithelial cell and fibroproliferation are potential for treatment of ARDS/ALI.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Quinasa de Linfoma Anaplásico/metabolismo , Ácidos Docosahexaenoicos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Angiotensina II/metabolismo , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación , Lipopolisacáridos/efectos adversos , Ratones , Ratas
17.
Small ; 16(15): e1902827, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31513333

RESUMEN

Implantable bioelectronics represent an emerging technology that can be integrated into the human body for diagnostic and therapeutic functions. Power supply devices are an essential component of bioelectronics to ensure their robust performance. However, conventional power sources are usually bulky, rigid, and potentially contain hazardous constituent materials. The fact that biological organisms are soft, curvilinear, and have limited accommodation space poses new challenges for power supply systems to minimize the interface mismatch and still offer sufficient power to meet clinical-grade applications. Here, recent advances in state-of-the-art nonconventional power options for implantable electronics, specifically, miniaturized, flexible, or biodegradable power systems are reviewed. Material strategies and architectural design of a broad array of power devices are discussed, including energy storage systems (batteries and supercapacitors), power devices which harvest sources from the human body (biofuel cells, devices utilizing biopotentials, piezoelectric harvesters, triboelectric devices, and thermoelectric devices), and energy transfer devices which utilize sources in the surrounding environment (ultrasonic energy harvesters, inductive coupling/radiofrequency energy harvesters, and photovoltaic devices). Finally, future challenges and perspectives are given.


Asunto(s)
Fuentes de Energía Bioeléctrica , Prótesis e Implantes , Electrónica , Humanos
18.
Opt Express ; 28(21): 32124-32131, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115175

RESUMEN

Very limited 1-3 pairs of quantum-wells (QWs) are preferred for GaN-based laser diodes (LDs), which require more careful engineering of the carrier transport than LEDs. In this work, the first-barrier doping level of QWs is found to significantly affect the carrier confinement and distribution for GaN-based LDs. The first-barrier doping exceeding 2×1018 cm-3 will make the bottom QW return to the parasitic state, yielding unexpected photons absorption and even Auger recombination. The underlying physical mechanism is discussed in terms of the calculated energy-band diagram, carrier confinement, and distribution. And all the experimental findings are consistent with the physical model.

19.
Opt Express ; 28(8): 12201-12208, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403718

RESUMEN

Silicon photonics has been calling for an electrically pumped on-chip light source at room temperature for decades. A GaN-based microdisk laser diode with whispering gallery modes grown on Si is a promising candidate for compact on-chip light source. By suppressing the unintentional incorporation of carbon impurity in the p-type AlGaN cladding layer of the laser, we have significantly reduced the operation voltage and threshold current of the GaN-on-Si microdisk laser. Meanwhile the radius of the microdisk laser was shrunk to 8 µm to lower the thermal power. The overall junction temperature of the microdisk laser was effectively reduced. As a result, the first continuous-wave electrically pumped InGaN-based microdisk laser grown on Si was achieved at room temperature.

20.
Respir Res ; 20(1): 192, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31438948

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is characterized by alveolar epithelial disruption. Lipoxins (LXs), as so-called "braking signals" of inflammation, are the first mediators identified to have dual anti-inflammatory and inflammatory pro-resolving properties. METHODS: In vivo, lipoxinA4 was administrated intraperitoneally with 1 µg/per mouse after intra-tracheal LPS administration (10 mg/kg). Apoptosis, proliferation and epithelial-mesenchymal transition of AT II cells were measured by immunofluorescence. In vitro, primary human alveolar type II cells were used to model the effects of lipoxin A4 upon proliferation, apoptosis and epithelial-mesenchymal transition. RESULTS: In vivo, lipoxin A4 markedly promoted alveolar epithelial type II cells (AT II cells) proliferation, inhibited AT II cells apoptosis, reduced cleaved caspase-3 expression and epithelial-mesenchymal transition, with the outcome of attenuated LPS-induced lung injury. In vitro, lipoxin A4 increased primary human alveolar epithelial type II cells (AT II cells) proliferation and reduced LPS induced AT II cells apoptosis. LipoxinA4 also inhibited epithelial mesenchymal transition in response to TGF-ß1, which was lipoxin receptor dependent. In addition, Smad3 inhibitor (Sis3) and PI3K inhibitor (LY294002) treatment abolished the inhibitory effects of lipoxinA4 on the epithelial mesenchymal transition of primary human AT II cells. Lipoxin A4 significantly downregulated the expressions of p-AKT and p-Smad stimulated by TGF-ß1 in primary human AT II cells. CONCLUSION: LipoxinA4 attenuates lung injury via stimulating epithelial cell proliferation, reducing epithelial cell apoptosis and inhibits epithelial-mesenchymal transition.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Lipoxinas/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Células Cultivadas , Humanos , Inyecciones Intraperitoneales , Lipopolisacáridos , Lipoxinas/efectos adversos , Ratones , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/uso terapéutico , Alveolos Pulmonares/citología , Alveolos Pulmonares/efectos de los fármacos , Síndrome de Dificultad Respiratoria/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA