Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 595(7866): 295-302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34079130

RESUMEN

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Asunto(s)
Adenina/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Edición Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Globinas beta/genética , Animales , Antígenos CD34/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Genoma Humano/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Ratones
2.
Cancer Res ; 75(15): 3077-86, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26071255

RESUMEN

Dysregulation of the EGFR signaling axis enhances bone metastases in many solid cancers. However, the relevant downstream effector signals in this axis are unclear. miR-1 was recently shown to function as a tumor suppressor in prostate cancer cells, where its expression correlated with reduced metastatic potential. In this study, we demonstrated a role for EGFR translocation in regulating transcription of miR-1-1, which directly targets expression of TWIST1. Consistent with these findings, we observed decreased miR-1 levels that correlated with enhanced expression of activated EGFR and TWIST1 in a cohort of human prostate cancer specimens and additional datasets. Our findings support a model in which nuclear EGFR acts as a transcriptional repressor to constrain the tumor-suppressive role of miR-1 and sustain oncogenic activation of TWIST1, thereby leading to accelerated bone metastasis.


Asunto(s)
Neoplasias Óseas/secundario , Receptores ErbB/metabolismo , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/patología , Proteína 1 Relacionada con Twist/metabolismo , Regiones no Traducidas 3' , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Regulación hacia Abajo , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones Desnudos , MicroARNs/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Estabilidad del ARN , Proteína 1 Relacionada con Twist/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Cell Biol ; 35(11): 1940-51, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25802280

RESUMEN

Bone metastasis is the hallmark of progressive and castration-resistant prostate cancers. MicroRNA 1 (miR-1) levels are decreased in clinical samples of primary prostate cancer and further reduced in metastases. SRC has been implicated as a critical factor in bone metastasis, and here we show that SRC is a direct target of miR-1. In prostate cancer patient samples, miR-1 levels are inversely correlated with SRC expression and a SRC-dependent gene signature. Ectopic miR-1 expression inhibited extracellular signal-regulated kinase (ERK) signaling and bone metastasis in a xenograft model. In contrast, SRC overexpression was sufficient to reconstitute bone metastasis and ERK signaling in cells expressing high levels of miR-1. Androgen receptor (AR) activity, defined by an AR output signature, is low in a portion of castration-resistant prostate cancer. We show that AR binds to the miR-1-2 regulatory region and regulates miR-1 transcription. Patients with low miR-1 levels displayed correlated low canonical AR gene signatures. Our data support the existence of an AR-miR-1-SRC regulatory network. We propose that loss of miR-1 is one mechanistic link between low canonical AR output and SRC-promoted metastatic phenotypes.


Asunto(s)
Andrógenos/genética , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , MicroARNs/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Familia-src Quinasas/genética , Animales , Neoplasias Óseas/patología , Línea Celular Tumoral , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Transducción de Señal/genética
4.
Mol Cell Biol ; 32(5): 941-53, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22203039

RESUMEN

Epithelial-mesenchymal transition (EMT) is implicated in various pathological processes within the prostate, including benign prostate hyperplasia (BPH) and prostate cancer progression. However, an ordered sequence of signaling events initiating carcinoma-associated EMT has not been established. In a model of transforming growth factor ß (TGFß)-induced prostatic EMT, SLUG is the dominant regulator of EMT initiation in vitro and in vivo, as demonstrated by the inhibition of EMT following Slug depletion. In contrast, SNAIL depletion was significantly less rate limiting. TGFß-stimulated KLF4 degradation is required for SLUG induction. Expression of a degradation-resistant KLF4 mutant inhibited EMT, and furthermore, depletion of Klf4 was sufficient to initiate SLUG-dependent EMT. We show that KLF4 and another epithelial determinant, FOXA1, are direct transcriptional inhibitors of SLUG expression in mouse and human prostate cancer cells. Furthermore, self-reinforcing regulatory loops for SLUG-KLF4 and SLUG-FOXA1 lead to SLUG-dependent binding of polycomb repressive complexes to the Klf4 and Foxa1 promoters, silencing transcription and consolidating mesenchymal commitment. Analysis of tissue arrays demonstrated decreased KLF4 and increased SLUG expression in advanced-stage primary prostate cancer, substantiating the involvement of the EMT signaling events described in model systems.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Factores de Transcripción de Tipo Kruppel/genética , Neoplasias de la Próstata/patología , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Animales , Línea Celular Tumoral , Células Clonales , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones , Neoplasias de la Próstata/genética , Transducción de Señal/genética , Factores de Transcripción de la Familia Snail , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA