RESUMEN
Arthrogryposis is a heterogenous condition with a wide variety of etiological causes. It has been subdivided clinically based on the presence of additional features. Dominant gain of function (GoF) pathogenic variants in PIEZO2 have been associated with several forms of arthrogryposis. Previous reports have focused on diagnosis and clinical features. We report a three-generation family with four affected individuals with a known pathogenic GoF change p.(Glu2727del) in PIEZO2. All family members presented at birth with distal arthrogryposis and ophthalmoplegia but have varied in their subsequent clinical course with differences in mobility and joint restriction. In the longer term, other features have presented including dysphagia, back pain and spinal stenosis-like symptoms, raised intraocular pressure, and progressive restrictive lung disease. As far as we know, this is the first report detailing the longitudinal follow-up of a three-generation family which highlights potential long-term complications in patients with PIEZO2-related arthrogryposis. We present this family to demonstrate the importance of long-term follow-up for the clinical management of this group of patients.
Asunto(s)
Artrogriposis , Oftalmoplejía , Artrogriposis/diagnóstico , Artrogriposis/genética , Artrogriposis/patología , Estudios de Seguimiento , Humanos , Recién Nacido , Canales Iónicos/genética , Linaje , Enfermedades de la RetinaRESUMEN
INTRODUCTION: Recurrent chromosome 16p13.11 microduplication has been characterised in the literature as a cause of developmental delay, learning difficulties and behavioural abnormalities. It is a neurosusceptibility locus and has incomplete penetrance and variable expression. Other clinical features, such as cardiac abnormalities have also been reported. The duplicated region contains the MYH11 gene, which encodes the protein myosin-11 and is a component of the myosin heavy chain in smooth muscle. Recent literature has suggested 16p13.11 microduplication as one of the possible risk factors for thoracic aortic aneurysms and dissection (TAAD). Therefore, we studied the detailed phenotype of cases of chromosome 16p13.11 microduplication from seven centres in the United Kingdom (UK) to expand the phenotype, focusing on the cardiac abnormalities. METHODS: All individuals with a chromosome 16p13.11 microduplication seen in Clinical Genetics prior to June 2017 in 6 centres (prior to 2018 in the seventh centre) were identified through the regional genetics laboratory databases. A Microsoft Excel® proforma was created and clinical data was collected retrospectively from clinical genetics databases from the seven genetics services in the UK. The data was collated and analysed collectively. RESULTS: The majority of the individuals presented with (72%) developmental delay and (62%) behavioural abnormalities, in keeping with the published literature. 27% had some dysmorphic features, 14% had visual impairment and 8% had congenital cardiac abnormalities. Echocardiograms were performed in 50% of patients, and only 3.8% patients had aortic dilatation and no one had aortic dissection. 9.7% of patients were found to have a second genetic/chromosomal diagnosis, especially where there were additional phenotypic features. CONCLUSION: 16p13.11 microduplication is a neurosusceptibility locus and is associated with variable expression. It may be helpful to refer children with 16p13.11 microduplication for a cardiac review for congenital cardiac abnormalities and also for ophthalmological assessment. Further prospective studies with cardiac assessments are recommended in this cohort of patients to determine whether ongoing aortic surveillance is indicated. Guidelines about the frequency of surveillance are indicated, especially in individuals with normal cardiac findings. We also highlight the importance of considering a second diagnosis if the phenotype is inconsistent with that reported.
Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 11 , Humanos , Estudios Prospectivos , Estudios Retrospectivos , FenotipoRESUMEN
Otofaciocervical syndrome (OTFCS) is a rare condition associated with short stature, abnormal facial features and conductive hearing loss. OTFCS type 2 (OTFCS) is an autosomal recessive form of this condition with associated T cell deficiency due to biallelic variants in PAX1. We report a female child born to a consanguineous couple with homozygous PAX1 variant. She was diagnosed with T cell immunodeficiency as a neonate and underwent haematopoietic stem cell transplant with cord blood at the age of 5 months. She had facial dysmorphism including ear abnormalities and spinal deformity. We present longitudinal follow-up of the proband who has responded well to the bone marrow transplant to add to the otherwise limited description of this rare condition. This case report expands on the limited literature available on this condition, with only five families reported to date and it further highlights the clinical utility of a rapid gene-agnostic trio exome analysis in identifying a genetic diagnosis in patients who previously underwent genomic testing by gene panel analysis.
Asunto(s)
Síndrome Branquio Oto Renal , Síndrome Branquio Oto Renal/genética , Diagnóstico Diferencial , Femenino , Homocigoto , Humanos , Lactante , Recién Nacido , Secuenciación del ExomaRESUMEN
INTRODUCTION: Genetic disorders are a significant cause of paediatric morbidity and mortality. Rapid exome sequencing was introduced by the National Health Service (NHS) in England on 1st October 2019 for acutely unwell children with a likely monogenic disorder, or to inform current pregnancy management where there was a previously affected child or fetus. We present results of a 12-month patient cohort from one large clinical genetics centre in England. METHODS: Patients were identified through local genetics laboratory records. We included all cases which underwent rapid exome sequencing between 1st October 2020 and 30th September 2021. DNA was extracted, quality checked and exported to the Exeter Genomic laboratory where library preparation, exome sequencing of all known human genes, gene-agnostic bioinformatic analysis, variant interpretation, MDT discussions and reporting were performed. RESULTS: Ninety-five probands were included. Trio analysis was performed in 90% (85), duo in 8% (8), singleton in 2% (2). The median turnaround time for preliminary reports was 11 days. The overall diagnostic yield was 40% (38 patients); 36% (34 patients) made solely on exome with a further 4% on concomitant exome and microarray analysis. Highest diagnostic rates were seen in patients with neuro-regression, skeletal dysplasia, neuromuscular and neurometabolic conditions. Where the diagnosis was made solely through exome sequencing, management was altered for the proband or family in 97% (33/34). For the proband, this was most commonly that the diagnosis was able to inform current management and prognosis (20 patients, 59%), as well as direct specialist referrals (10 patients, 29%). For families, the exome sequencing results provided accurate recurrence risk counselling in 88% (30/34) with cascade testing offered if indicated in some families. CONCLUSIONS: In the majority of cases, the genetic diagnoses influenced acute and long-term management for critically ill children and their families. Paediatric and neonatal clinicians in the NHS now have direct access to exome sequencing for their patients. The rapid turnaround time was particularly helpful to alter the management in acute clinical settings and is a powerful tool for diagnosing monogenic conditions. This study is an example of a highly successful integration of a national rapid exome sequencing service with diagnostic rates comparable to previously reported literature.
Asunto(s)
Enfermedad Crítica , Exoma , Niño , Exoma/genética , Femenino , Humanos , Recién Nacido , Embarazo , Estudios Retrospectivos , Medicina Estatal , Secuenciación del Exoma/métodosRESUMEN
Despite the increased use of array comparative genomic hybridisation, duplications of Xq remain rarely reported in the literature. Xq21.1q21.31 duplication has previously been reported only once in a boy with features of Prader Willi syndrome (PWS). We report 2 malesiblings with maternally inherited duplication of Xq21.1q21.31 who demonstrate a variable phenotype. The proband has Prader Willi-like features such as global developmental delay, autism, obesity, short hands, and small genitalia with a history of food seeking behaviour, while his younger brother has isolated speech delay with some autistic features under evaluation. Both siblings have features such as bitemporal narrowing and small hands. It is therefore likely that the phenotype of duplications in this region is broader than PWS phenocopy, and further cases would be required to elucidate this.