Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(7): 1499-1514.e6, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33621478

RESUMEN

Despite their diverse biochemical characteristics and functions, all DNA-binding proteins share the ability to accurately locate their target sites among the vast excess of non-target DNA. Toward identifying universal mechanisms of the target search, we used single-molecule tracking of 11 diverse DNA-binding proteins in living Escherichia coli. The mobility of these proteins during the target search was dictated by DNA interactions rather than by their molecular weights. By generating cells devoid of all chromosomal DNA, we discovered that the nucleoid is not a physical barrier for protein diffusion but significantly slows the motion of DNA-binding proteins through frequent short-lived DNA interactions. The representative DNA-binding proteins (irrespective of their size, concentration, or function) spend the majority (58%-99%) of their search time bound to DNA and occupy as much as ∼30% of the chromosomal DNA at any time. Chromosome crowding likely has important implications for the function of all DNA-binding proteins.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética
2.
Mol Cell ; 78(2): 250-260.e5, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32097603

RESUMEN

Structural maintenance of chromosomes (SMC) complexes organize chromosomes ubiquitously, thereby contributing to their faithful segregation. We demonstrate that under conditions of increased chromosome occupancy of the Escherichia coli SMC complex, MukBEF, the chromosome is organized as a series of loops around a thin (<130 nm) MukBEF axial core, whose length is ∼1,100 times shorter than the chromosomal DNA. The linear order of chromosomal loci is maintained in the axial cores, whose formation requires MukBEF ATP hydrolysis. Axial core structure in non-replicating chromosomes is predominantly linear (1 µm) but becomes circular (1.5 µm) in the absence of MatP because of its failure to displace MukBEF from the 800 kbp replication termination region (ter). Displacement of MukBEF from ter by MatP in wild-type cells directs MukBEF colocalization with the replication origin. We conclude that MukBEF individualizes and compacts the chromosome lengthwise, demonstrating a chromosome organization mechanism similar to condensin in mitotic chromosome formation.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Cromosomas Bacterianos/genética , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/genética , Proteínas Cromosómicas no Histona/ultraestructura , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Mitosis/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Origen de Réplica/genética , Proteínas Represoras/ultraestructura
3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385314

RESUMEN

Structural maintenance of chromosomes (SMC) complexes contribute to chromosome organization in all domains of life. In Escherichia coli, MukBEF, the functional SMC homolog, promotes spatiotemporal chromosome organization and faithful chromosome segregation. Here, we address the relative contributions of MukBEF and the replication terminus (ter) binding protein, MatP, to chromosome organization-segregation. We show that MukBEF, but not MatP, is required for the normal localization of the origin of replication to midcell and for the establishment of translational symmetry between newly replicated sister chromosomes. Overall, chromosome orientation is normally maintained through division from one generation to the next. Analysis of loci flanking the replication termination region (ter), which demark the ends of the linearly organized portion of the nucleoid, demonstrates that MatP is required for maintenance of chromosome orientation. We show that DNA-bound ß2-processivity clamps, which mark the lagging strands at DNA replication forks, localize to the cell center, independent of replisome location but dependent on MukBEF action, and consistent with translational symmetry of sister chromosomes. Finally, we directly show that the older ("immortal") template DNA strand, propagated from previous generations, is preferentially inherited by the cell forming at the old pole, dependent on MukBEF and MatP. The work further implicates MukBEF and MatP as central players in chromosome organization, segregation, and nonrandom inheritance of genetic material and suggests a general framework for understanding how chromosome conformation and dynamics shape subcellular organization.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas Represoras/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Escherichia coli/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología
4.
Cell ; 133(1): 90-102, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18394992

RESUMEN

A prevalent view of DNA replication has been that it is carried out in fixed "replication factories." By tracking the progression of sister replication forks with respect to genetic loci in live Escherichia coli, we show that at initiation replisomes assemble at replication origins irrespective of where the origins are positioned within the cell. Sister replisomes separate and move to opposite cell halves shortly after initiation, migrating outwards as replication proceeds and both returning to midcell as replication termination approaches. DNA polymerase is maintained at stalled replication forks, and over short intervals of time replisomes are more dynamic than genetic loci. The data are inconsistent with models in which replisomes associated with sister forks act within a fixed replication factory. We conclude that independent replication forks follow the path of the compacted chromosomal DNA, with no structure other than DNA anchoring the replisome to any particular cellular region.


Asunto(s)
Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Cromosomas Bacterianos/metabolismo , Momento de Replicación del ADN , Origen de Réplica , Replicón
5.
Mol Cell ; 54(5): 832-43, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24768536

RESUMEN

In physiological settings, DNA translocases will encounter DNA-bound proteins, which must be dislodged or bypassed to allow continued translocation. FtsK is a bacterial translocase that promotes chromosome dimer resolution and decatenation by activating XerCD-dif recombination. To better understand how translocases act in crowded environments, we used single-molecule imaging to visualize FtsK in real time as it collided with other proteins. We show that FtsK can push, evict, and even bypass DNA-bound proteins. The primary factor dictating the outcome of collisions was the relative affinity of the proteins for their specific binding sites. Importantly, protein-protein interactions between FtsK and XerD help prevent removal of XerCD from DNA by promoting rapid reversal of FtsK. Finally, we demonstrate that RecBCD always overwhelms FtsK when these two motor proteins collide while traveling along the same DNA molecule, indicating that RecBCD is capable of exerting a much greater force than FtsK when translocating along DNA.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas de la Membrana/química , Bacteriófago lambda/genética , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Viral/química , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Transporte de Proteínas
6.
Nucleic Acids Res ; 47(1): 210-220, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30445553

RESUMEN

Bacterial DNA gyrase introduces negative supercoils into chromosomal DNA and relaxes positive supercoils introduced by replication and transiently by transcription. Removal of these positive supercoils is essential for replication fork progression and for the overall unlinking of the two duplex DNA strands, as well as for ongoing transcription. To address how gyrase copes with these topological challenges, we used high-speed single-molecule fluorescence imaging in live Escherichia coli cells. We demonstrate that at least 300 gyrase molecules are stably bound to the chromosome at any time, with ∼12 enzymes enriched near each replication fork. Trapping of reaction intermediates with ciprofloxacin revealed complexes undergoing catalysis. Dwell times of ∼2 s were observed for the dispersed gyrase molecules, which we propose maintain steady-state levels of negative supercoiling of the chromosome. In contrast, the dwell time of replisome-proximal molecules was ∼8 s, consistent with these catalyzing processive positive supercoil relaxation in front of the progressing replisome.


Asunto(s)
Girasa de ADN/química , ADN Superhelicoidal/química , Proteínas de Unión al ADN/química , Escherichia coli/enzimología , Catálisis , Girasa de ADN/genética , Girasa de ADN/aislamiento & purificación , ADN Superhelicoidal/genética , ADN Superhelicoidal/aislamiento & purificación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Unión Proteica , Imagen Individual de Molécula
7.
Nucleic Acids Res ; 47(18): 9696-9707, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400115

RESUMEN

Ubiquitous Structural Maintenance of Chromosomes (SMC) complexes use a proteinaceous ring-shaped architecture to organize and individualize chromosomes, thereby facilitating chromosome segregation. They utilize cycles of adenosine triphosphate (ATP) binding and hydrolysis to transport themselves rapidly with respect to DNA, a process requiring protein conformational changes and multiple DNA contact sites. By analysing changes in the architecture and stoichiometry of the Escherichia coli SMC complex, MukBEF, as a function of nucleotide binding to MukB and subsequent ATP hydrolysis, we demonstrate directly the formation of dimer of MukBEF dimer complexes, dependent on dimeric MukF kleisin. Using truncated and full length MukB, in combination with MukEF, we show that engagement of the MukB ATPase heads on nucleotide binding directs the formation of dimers of heads-engaged dimer complexes. Complex formation requires functional interactions between the C- and N-terminal domains of MukF with the MukB head and neck, respectively, and MukE, which organizes the complexes by stabilizing binding of MukB heads to MukF. In the absence of head engagement, a MukF dimer bound by MukE forms complexes containing only a dimer of MukB. Finally, we demonstrate that cells expressing MukBEF complexes in which MukF is monomeric are Muk-, with the complexes failing to associate with chromosomes.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/química , Cromosomas/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica , Proteínas Represoras/química
8.
Annu Rev Genet ; 46: 121-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22934648

RESUMEN

In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.


Asunto(s)
Segregación Cromosómica , Cromosomas Bacterianos/genética , Replicación del ADN , ADN Bacteriano/genética , Escherichia coli/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Cromosomas Bacterianos/metabolismo , ADN Primasa , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Transcripción Genética , Translocación Genética
9.
Nature ; 506(7487): 249-53, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24362571

RESUMEN

DNA double-strand break (DSB) repair by homologous recombination has evolved to maintain genetic integrity in all organisms. Although many reactions that occur during homologous recombination are known, it is unclear where, when and how they occur in cells. Here, by using conventional and super-resolution microscopy, we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether homologous recombination can occur efficiently between distant sister loci that have segregated to opposite halves of an E. coli cell. We show that a site-specific DSB in one sister can be repaired efficiently using distant sister homology. After RecBCD processing of the DSB, RecA is recruited to the cut locus, where it nucleates into a bundle that contains many more RecA molecules than can associate with the two single-stranded DNA regions that form at the DSB. Mature bundles extend along the long axis of the cell, in the space between the bulk nucleoid and the inner membrane. Bundle formation is followed by pairing, in which the two ends of the cut locus relocate at the periphery of the nucleoid and together move rapidly towards the homology of the uncut sister. After sister locus pairing, RecA bundles disassemble and proteins that act late in homologous recombination are recruited to give viable recombinants 1-2-generation-time equivalents after formation of the initial DSB. Mutated RecA proteins that do not form bundles are defective in sister pairing and in DSB-induced repair. This work reveals an unanticipated role of RecA bundles in channelling the movement of the DNA DSB ends, thereby facilitating the long-range homology search that occurs before the strand invasion and transfer reactions.


Asunto(s)
Emparejamiento Cromosómico , Cromosomas Bacterianos , Roturas del ADN de Doble Cadena , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Rec A Recombinasas/metabolismo , Reparación del ADN por Recombinación , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Rec A Recombinasas/genética , Reparación del ADN por Recombinación/genética
10.
Nucleic Acids Res ; 46(4): 1821-1833, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29294118

RESUMEN

The formation of 3' single-stranded DNA overhangs is a first and essential step during homology-directed repair of double-stranded breaks (DSB) of DNA, a task that in Escherichia coli is performed by RecBCD. While this protein complex has been well characterized through in vitro single-molecule studies, it has remained elusive how end resection proceeds in the crowded and complex environment in live cells. Here, we develop a two-color fluorescent reporter to directly observe the resection of individual inducible DSB sites within live E. coli cells. Real-time imaging shows that RecBCD during end resection degrades DNA with remarkably high speed (∼1.6 kb/s) and high processivity (>∼100 kb). The results show a pronounced asymmetry in the processing of the two DNA ends of a DSB, where much longer stretches of DNA are degraded in the direction of terminus. The microscopy observations are confirmed using quantitative polymerase chain reaction measurements of the DNA degradation. Deletion of the recD gene drastically decreased the length of resection, allowing for recombination with short ectopic plasmid homologies and significantly increasing the efficiency of horizontal gene transfer between strains. We thus visualized and quantified DNA end resection by the RecBCD complex in live cells, recorded DNA-degradation linked to end resection and uncovered a general relationship between the length of end resection and the choice of the homologous recombination template.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V/metabolismo , ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Exodesoxirribonucleasa V/genética , Eliminación de Gen , Transferencia de Gen Horizontal , Proteínas Luminiscentes , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Saccharomyces cerevisiae
11.
Nucleic Acids Res ; 44(8): 3801-10, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27036863

RESUMEN

Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering.


Asunto(s)
Sistemas CRISPR-Cas , Replicación del ADN , Escherichia coli/genética , Proteínas Asociadas a CRISPR/metabolismo , Cromosomas Bacterianos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Plásmidos/genética , Origen de Réplica , Temperatura
12.
Nucleic Acids Res ; 44(13): 6262-73, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27166373

RESUMEN

Protein-DNA complexes are one of the principal barriers the replisome encounters during replication. One such barrier is the Tus-ter complex, which is a direction dependent barrier for replication fork progression. The details concerning the dynamics of the replisome when encountering these Tus-ter barriers in the cell are poorly understood. By performing quantitative fluorescence microscopy with microfuidics, we investigate the effect on the replisome when encountering these barriers in live Escherichia coli cells. We make use of an E. coli variant that includes only an ectopic origin of replication that is positioned such that one of the two replisomes encounters a Tus-ter barrier before the other replisome. This enables us to single out the effect of encountering a Tus-ter roadblock on an individual replisome. We demonstrate that the replisome remains stably bound after encountering a Tus-ter complex from the non-permissive direction. Furthermore, the replisome is only transiently blocked, and continues replication beyond the barrier. Additionally, we demonstrate that these barriers affect sister chromosome segregation by visualizing specific chromosomal loci in the presence and absence of the Tus protein. These observations demonstrate the resilience of the replication fork to natural barriers and the sensitivity of chromosome alignment to fork progression.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Segregación Cromosómica/genética , Cromosomas Bacterianos/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sustancias Macromoleculares/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(37): E5133-41, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26324908

RESUMEN

The FtsK dsDNA translocase functions in bacterial chromosome unlinking by activating XerCD-dif recombination in the replication terminus region. To analyze FtsK assembly and translocation, and the subsequent activation of XerCD-dif recombination, we extended the tethered fluorophore motion technique, using two spectrally distinct fluorophores to monitor two effective lengths along the same tethered DNA molecule. We observed that FtsK assembled stepwise on DNA into a single hexamer, and began translocation rapidly (∼ 0.25 s). Without extruding DNA loops, single FtsK hexamers approached XerCD-dif and resided there for ∼ 0.5 s irrespective of whether XerCD-dif was synapsed or unsynapsed. FtsK then dissociated, rather than reversing. Infrequently, FtsK activated XerCD-dif recombination when it encountered a preformed synaptic complex, and dissociated before the completion of recombination, consistent with each FtsK-XerCD-dif encounter activating only one round of recombination.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Integrasas/metabolismo , Proteínas de la Membrana/metabolismo , Adenosina Trifosfato/química , Secuencia de Bases , Cromosomas Bacterianos/metabolismo , ADN/química , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Funciones de Verosimilitud , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Distribución Normal , Unión Proteica , Transporte de Proteínas , Recombinación Genética
14.
Nucleic Acids Res ; 43(16): 7865-77, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26160884

RESUMEN

Each cell division requires the unwinding of millions of DNA base pairs to allow chromosome duplication and gene transcription. As DNA replication and transcription share the same template, conflicts between both processes are unavoidable and head-on collisions are thought to be particularly problematic. Surprisingly, a recent study reported unperturbed cell cycle progression in Escherichia coli cells with an ectopic replication origin in which highly transcribed rrn operons were forced to be replicated opposite to normal. In this study we have re-generated a similar strain and found the doubling time to be twice that of normal cells. Replication profiles of this background revealed significant deviations in comparison to wild-type profiles, particularly in highly transcribed regions and the termination area. These deviations were alleviated by mutations that either inactivate the termination area or destabilise RNA polymerase complexes and allow their easier displacement by replication forks. Our data demonstrate that head-on replication-transcription conflicts are highly problematic. Indeed, analysis of the replication profile of the previously published E. coli construct revealed a chromosomal rearrangement that alleviates replication-transcription conflicts in an intriguingly simple way. Our data support the idea that avoiding head-on collisions has significantly contributed to shaping the distinct architecture of bacterial chromosomes.


Asunto(s)
Cromosomas Bacterianos , Replicación del ADN , Escherichia coli/genética , Origen de Réplica , Transcripción Genética , Escherichia coli/crecimiento & desarrollo
15.
PLoS Genet ; 10(8): e1004504, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101671

RESUMEN

Cell division in Escherichia coli starts with assembly of FtsZ protofilaments into a ring-like structure, the Z-ring. Positioning of the Z-ring at midcell is thought to be coordinated by two regulatory systems, nucleoid occlusion and the Min system. In E. coli, nucleoid occlusion is mediated by the SlmA proteins. Here, we address the question of whether there are additional positioning systems that are capable of localizing the E. coli divisome with respect to the cell center. Using quantitative fluorescence imaging we show that slow growing cells lacking functional Min and SlmA nucleoid occlusion systems continue to divide preferentially at midcell. We find that the initial Z-ring assembly occurs over the center of the nucleoid instead of nucleoid-free regions under these conditions. We determine that Z-ring formation begins shortly after the arrival of the Ter macrodomain at the nucleoid center. Removal of either the MatP, ZapB, or ZapA proteins significantly affects the accuracy and precision of Z-ring positioning relative to the nucleoid center in these cells in accordance with the idea that these proteins link the Ter macrodomain and the Z-ring. Interestingly, even in the absence of Min, SlmA, and the putative Ter macrodomain - Z-ring link, there remains a weak midcell positioning bias for the Z-ring. Our work demonstrates that additional Z-ring localization systems are present in E. coli than are known currently. In particular, we identify that the Ter macrodomain acts as a landmark for the Z-ring in the presence of MatP, ZapB and ZapA proteins.


Asunto(s)
Proteínas Portadoras/genética , Ciclo Celular/genética , División Celular/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Ciclo Celular/genética , Polaridad Celular/genética , Proteínas Cromosómicas no Histona/genética , Escherichia coli/crecimiento & desarrollo , Indoles , Imagen Óptica
16.
Proc Natl Acad Sci U S A ; 111(7): 2734-9, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24449860

RESUMEN

Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid-bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum ß-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs.


Asunto(s)
División Celular/fisiología , Replicación del ADN/fisiología , Farmacorresistencia Bacteriana/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Factores R/fisiología , Secuencia de Bases , Western Blotting , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Microscopía Electrónica , Datos de Secuencia Molecular , Oligonucleótidos/genética , Factores R/metabolismo , Análisis de Secuencia de ADN
17.
Mol Cell ; 31(4): 498-509, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18722176

RESUMEN

Dimeric circular chromosomes, formed by recombination between monomer sisters, cannot be segregated to daughter cells at cell division. XerCD site-specific recombination at the Escherichia coli dif site converts these dimers to monomers in a reaction that requires the DNA translocase FtsK. Short DNA sequences, KOPS (GGGNAGGG), which are polarized toward dif in the chromosome, direct FtsK translocation. FtsK interacts with KOPS through a C-terminal winged helix domain gamma. The crystal structure of three FtsKgamma domains bound to 8 bp KOPS DNA demonstrates how three gamma domains recognize KOPS. Using covalently linked dimers of FtsK, we infer that three gamma domains per hexamer are sufficient to recognize KOPS and load FtsK and subsequently activate recombination at dif. During translocation, FtsK fails to recognize an inverted KOPS sequence. Therefore, we propose that KOPS act solely as a loading site for FtsK, resulting in a unidirectionally oriented hexameric motor upon DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Pseudomonas aeruginosa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Bioensayo , Cristalografía por Rayos X , Dimerización , Hidrólisis , Modelos Biológicos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Recombinación Genética
18.
Nucleic Acids Res ; 42(2): 1042-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24137005

RESUMEN

Bacterial plasmids play important roles in the metabolism, pathogenesis and bacterial evolution and are highly versatile biotechnological tools. Stable inheritance of plasmids depends on their autonomous replication and efficient partition to daughter cells at cell division. Active partition systems have not been identified for high-copy number plasmids, and it has been generally believed that they are partitioned randomly at cell division. Nevertheless, direct evidence for the cellular location of replicating and nonreplicating plasmids, and the partition mechanism has been lacking. We used as model pJHCMW1, a plasmid isolated from Klebsiella pneumoniae that includes two ß-lactamase and two aminoglycoside resistance genes. Here we report that individual ColE1-type plasmid molecules are mobile and tend to be excluded from the nucleoid, mainly localizing at the cell poles but occasionally moving between poles along the long axis of the cell. As a consequence, at the moment of cell division, most plasmid molecules are located at the poles, resulting in efficient random partition to the daughter cells. Complete replication of individual molecules occurred stochastically and independently in the nucleoid-free space throughout the cell cycle, with a constant probability of initiation per plasmid.


Asunto(s)
Bacterias/genética , Plásmidos/fisiología , Ciclo Celular/genética , División Celular , Replicación del ADN , Difusión , Klebsiella pneumoniae/citología , Klebsiella pneumoniae/genética , Plásmidos/biosíntesis , Procesos Estocásticos
19.
Proc Natl Acad Sci U S A ; 110(52): 20906-11, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24218579

RESUMEN

In Escherichia coli, complete unlinking of newly replicated sister chromosomes is required to ensure their proper segregation at cell division. Whereas replication links are removed primarily by topoisomerase IV, XerC/XerD-dif site-specific recombination can mediate sister chromosome unlinking in Topoisomerase IV-deficient cells. This reaction is activated at the division septum by the DNA translocase FtsK, which coordinates the last stages of chromosome segregation with cell division. It has been proposed that, after being activated by FtsK, XerC/XerD-dif recombination removes DNA links in a stepwise manner. Here, we provide a mathematically rigorous characterization of this topological mechanism of DNA unlinking. We show that stepwise unlinking is the only possible pathway that strictly reduces the complexity of the substrates at each step. Finally, we propose a topological mechanism for this unlinking reaction.


Asunto(s)
Segregación Cromosómica/fisiología , Cromosomas Bacterianos/genética , ADN Encadenado/química , Escherichia coli/genética , Modelos Biológicos , Recombinación Genética/fisiología , Segregación Cromosómica/genética , Proteínas de Escherichia coli/metabolismo , Integrasas/metabolismo , Proteínas de la Membrana/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(20): 8063-8, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23630273

RESUMEN

Cellular DNA damage is reversed by balanced repair pathways that avoid accumulation of toxic intermediates. Despite their importance, the organization of DNA repair pathways and the function of repair enzymes in vivo have remained unclear because of the inability to directly observe individual reactions in living cells. Here, we used photoactivation, localization, and tracking in live Escherichia coli to directly visualize single fluorescent labeled DNA polymerase I (Pol) and ligase (Lig) molecules searching for DNA gaps and nicks, performing transient reactions, and releasing their products. Our general approach provides enzymatic rates and copy numbers, substrate-search times, diffusion characteristics, and the spatial distribution of reaction sites, at the single-cell level, all in one measurement. Single repair events last 2.1 s (Pol) and 2.5 s (Lig), respectively. Pol and Lig activities increased fivefold over the basal level within minutes of DNA methylation damage; their rates were limited by upstream base excision repair pathway steps. Pol and Lig spent >80% of their time searching for free substrates, thereby minimizing both the number and lifetime of toxic repair intermediates. We integrated these single-molecule observations to generate a quantitative, systems-level description of a model repair pathway in vivo.


Asunto(s)
Bacterias/metabolismo , Daño del ADN , Reparación del ADN , Escherichia coli/genética , Citosol/metabolismo , Metilación de ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Difusión , Escherichia coli/metabolismo , Microscopía Fluorescente , Unión Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA