Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 39(27): 5284-5298, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31085606

RESUMEN

Acoustic signals are relayed from the ear to the brain via spiral ganglion neurons (SGNs) that receive auditory information from the cochlear inner hair cells (IHCs) and transmit that information to the cochlear nucleus of the brainstem. Physiologically distinct classes of SGNs have been characterized by their spontaneous firing rate and responses to sound and those physiological distinctions are thought to correspond to stereotyped synaptic positions on the IHC. More recently, single-cell profiling has identified multiple groups of SGNs based on transcriptional profiling; however, correlations between any of these groups and distinct neuronal physiology have not been determined. In this study, we show that expression of the POU (Pit-Oct-Unc) transcription factor Pou4f1 in type I SGNs in mice of both sexes correlates with a synaptic location on the modiolar side of IHCs. Conditional deletion of Pou4f1 in SGNs beginning in mice at embryonic day 13 rescues the early path-finding and apoptotic phenotypes reported for germline deletion of Pou4f1, resulting in a phenotypically normal development of SGN patterning. However, conditional deletion of Pou4f1 in SGNs alters the activation of Ca2+ channels in IHCs primarily by increasing their voltage sensitivity. Moreover, the modiolar to pillar gradient of active zone Ca2+ influx strength is eliminated. These results demonstrate that a subset of modiolar-targeted SGNs retain expression of Pou4f1 beyond the onset of hearing and suggest that this transcription factor plays an instructive role in presynaptic Ca2+ signaling in IHCs.SIGNIFICANCE STATEMENT Physiologically distinct classes of type I spiral ganglion neurons (SGNs) are necessary to encode sound intensities spanning the audible range. Although anatomical studies have demonstrated structural correlates for some physiologically defined classes of type I SGNs, an understanding of the molecular pathways that specify each type is only now emerging. Here, we demonstrate that expression of the transcription factor Pou4f1 corresponds to a distinct subgroup of type I SGNs that synapse on the modiolar side of inner hair cells. The conditional deletion of Pou4f1 after SGN formation does not disrupt ganglion size or morphology, change the distribution of IHC synaptic locations, or affect the creation of synapses, but it does influence the voltage dependence and strength of Ca2+ influx at presynaptic active zones in inner hair cells.


Asunto(s)
Señalización del Calcio , Audición/fisiología , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Factor de Transcripción Brn-3A/metabolismo , Animales , Potenciales Evocados Auditivos del Tronco Encefálico , Femenino , Células Ciliadas Auditivas Internas , Masculino , Ratones Endogámicos C57BL , Ganglio Espiral de la Cóclea/citología
2.
Toxicology ; 283(1): 1-7, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21277931

RESUMEN

General anaesthetics are proposed to cause unconsciousness by modulating neuronal excitability in the mammalian brain through mechanisms that include enhancement of inhibitory GABA(A) receptor currents and suppression of excitatory glutamate receptor responses. Both intravenous and volatile agents may produce neurotoxic effects during early postnatal rodent brain development through similar mechanisms. In the following study, we investigated anaesthetic cytotoxicity in primary cortical neurones and glia from postnatal day 2-8 mice. Cultures at 4-20 days in vitro were exposed to combinations of ketamine (100 µM to 3 mM), nitrous oxide (75%, v/v) and/or isoflurane (1.5-5%, v/v) for 6-12 h. Neuronal survival and cell death were measured via microtubule associated protein 2 immunoassay and lactate dehydrogenase release assays, respectively. Clinically relevant anaesthetic concentrations of ketamine, nitrous oxide and isoflurane had no significant neurotoxic effects individually or when given as anaesthetic cocktails, even with up to 12 h exposure. This lack of neurotoxicity was observed regardless of whether cultures were prepared from postnatal day 0-2 or day 8 mice, and was also unaffected by number of days in vitro (DIV 4-20). Significant neurotoxic effects were only observed at supraclinical concentrations (e.g. 1-3 mM ketamine). Our study suggests that neurotoxicity previously reported in vivo is not due to direct cytotoxicity of anaesthetic agents, but results from other impacts of the anaesthetised state during early brain development.


Asunto(s)
Anestésicos Generales/toxicidad , Corteza Cerebral/efectos de los fármacos , Isoflurano/toxicidad , Ketamina/toxicidad , Neuronas/efectos de los fármacos , Óxido Nitroso/toxicidad , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , N-Metilaspartato/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA