Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877763

RESUMEN

While ceftriaxone remains the first-line treatment for gonorrhoea, the US CDC recommended cefixime as a second-line treatment in 2021. We tested 1176 Neisseria gonorrhoeae isolates among clients attending the Melbourne Sexual Health Centre in 2021-2022. The prevalence of cefixime resistance was 6.3% (74/1176), azithromycin resistance was 4.9% (58/1176) and ceftriaxone resistance was 0% (0/1176). Cefixime resistance was the highest among women (16.4%, 10/61), followed by men-who-have-sex-with-women (6.4%, 7/109), and men-who-have-sex-with-men (5.8%, 57/982). The prevalence of cefixime-resistant N. gonorrhoeae exceeds the threshold of the 5% resistance level recommended by the World Health Organization; and thus, cefixime treatment would have limited benefits in Australia.

2.
Br J Cancer ; 130(5): 728-740, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38200234

RESUMEN

BACKGROUND: This study aimed to investigate clinicopathological and molecular tumour features associated with intratumoral pks+ Escherichia coli (pks+E.coli+), pks+E.coli- (non-E.coli bacteria harbouring the pks island), Enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum (F. nucleatum). METHODS: We screened 1697 tumour-derived DNA samples from the Australasian Colorectal Cancer Family Registry, Melbourne Collaborative Cohort Study and the ANGELS study using targeted PCR. RESULTS: Pks+E.coli+ was associated with male sex (P < 0.01) and APC:c.835-8 A > G somatic mutation (P = 0.03). The association between pks+E.coli+ and APC:c.835-8 A > G was specific to early-onset CRCs (diagnosed<45years, P = 0.02). The APC:c.835-A > G was not associated with pks+E.coli- (P = 0.36). F. nucleatum was associated with DNA mismatch repair deficiency (MMRd), BRAF:c.1799T>A p.V600E mutation, CpG island methylator phenotype, proximal tumour location, and high levels of tumour infiltrating lymphocytes (Ps < 0.01). In the stratified analysis by MMRd subgroups, F. nucleatum was associated with Lynch syndrome, MLH1 methylated and double MMR somatic mutated MMRd subgroups (Ps < 0.01). CONCLUSION: Intratumoral pks+E.coli+ but not pks+E.coli- are associated with CRCs harbouring the APC:c.835-8 A > G somatic mutation, suggesting that this mutation is specifically related to DNA damage from colibactin-producing E.coli exposures. F. nucleatum was associated with both hereditary and sporadic MMRd subtypes, suggesting the MMRd tumour microenvironment is important for F. nucleatum colonisation irrespective of its cause.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Colorrectales , Fusobacterium nucleatum , Síndromes Neoplásicos Hereditarios , Humanos , Masculino , Fusobacterium nucleatum/genética , Bacteroides fragilis/genética , Escherichia coli/genética , Estudios de Cohortes , Neoplasias Colorrectales/patología , Daño del ADN , ADN , Microambiente Tumoral
3.
Antimicrob Agents Chemother ; 67(11): e0078523, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823632

RESUMEN

Streptococcus pneumoniae is a major human pathogen with a high burden of disease. Non-invasive isolates (those found in non-sterile sites) are thought to be a key source of invasive isolates (those found in sterile sites) and a reservoir of anti-microbial resistance (AMR) determinants. Despite this, pneumococcal surveillance has almost exclusively focused on invasive isolates. We aimed to compare contemporaneous invasive and non-invasive isolate populations to understand how they interact and identify differences in AMR gene distribution. We used a combination of whole-genome sequencing and phenotypic anti-microbial susceptibility testing and a data set of invasive (n = 1,288) and non-invasive (n = 186) pneumococcal isolates, collected in Victoria, Australia, between 2018 and 2022. The non-invasive population had increased levels of antibiotic resistance to multiple classes of antibiotics including beta-lactam antibiotics penicillin and ceftriaxone. We identified genomic intersections between the invasive and non-invasive populations and no distinct phylogenetic clustering of the two populations. However, this analysis revealed sub-populations overrepresented in each population. The sub-populations that had high levels of AMR were overrepresented in the non-invasive population. We determined that WamR-Pneumo was the most accurate in silico tool for predicting resistance to the antibiotics tested. This tool was then used to assess the allelic diversity of the penicillin-binding protein genes, which acquire mutations leading to beta-lactam antibiotic resistance, and found that they were highly conserved (≥80% shared) between the two populations. These findings show the potential of non-invasive isolates to serve as reservoirs of AMR determinants.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/epidemiología , Filogenia , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
4.
Clin Infect Dis ; 73(7): e1881-e1884, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32927479

RESUMEN

Healthcare workers are at increased risk of occupational transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report 2 instances of healthcare workers contracting SARS-CoV-2 despite no known breach of personal protective equipment. Additional specific equipment cleaning was initiated. Viral genomic sequencing supported this transmission hypothesis and our subsequent response.


Asunto(s)
COVID-19 , Genómica , Humanos , Control de Infecciones , Equipo de Protección Personal , SARS-CoV-2
5.
Clin Infect Dis ; 73(11): e3912-e3920, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32663248

RESUMEN

BACKGROUND: Multiresistant organisms (MROs) pose a critical threat to public health. Population-based programs for control of MROs such as carbapenemase-producing Enterobacterales (CPE) have emerged and evaluation is needed. We assessed the feasibility and impact of a statewide CPE surveillance and response program deployed across Victoria, Australia (population 6.5 million). METHODS: A prospective multimodal intervention including active screening, carrier isolation, centralized case investigation, and comparative pathogen genomics was implemented. We analyzed trends in CPE incidence and clinical presentation, risk factors, and local transmission over the program's first 3 years (2016-2018). RESULTS: CPE case ascertainment increased over the study period to 1.42 cases/100 000 population, linked to increased screening without a concomitant rise in active clinical infections (0.45-0.60 infections/100 000 population, P = .640). KPC-2 infection decreased from 0.29 infections/100 000 population prior to intervention to 0.03 infections/100 000 population in 2018 (P = .003). Comprehensive case investigation identified instances of overseas community acquisition. Median time between isolate referral and genomic and epidemiological assessment for local transmission was 11 days (IQR, 9-14). Prospective surveillance identified numerous small transmission networks (median, 2; range, 1-19 cases), predominantly IMP and KPC, with median pairwise distance of 8 (IQR, 4-13) single nucleotide polymorphisms; low diversity between clusters of the same sequence type suggested genomic cluster definitions alone are insufficient for targeted response. CONCLUSIONS: We demonstrate the value of centralized CPE control programs to increase case ascertainment, resolve risk factors, and identify local transmission through prospective genomic and epidemiological surveillance; methodologies are transferable to low-prevalence settings and MROs globally.


Asunto(s)
Infecciones por Enterobacteriaceae , Proteínas Bacterianas/genética , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/prevención & control , Genómica , Humanos , Estudios Prospectivos , Victoria , beta-Lactamasas/genética
6.
Antimicrob Agents Chemother ; 65(12): e0120021, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34543095

RESUMEN

Typhoid fever is an invasive bacterial disease of humans that disproportionately affects low- and middle-income countries. Antimicrobial resistance (AMR) has been increasingly prevalent in recent decades in Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, limiting treatment options. In Australia, most cases of typhoid fever are imported due to travel to regions where typhoid fever is endemic. Here, all 116 isolates of S. Typhi isolated in Victoria, Australia, between 1 July 2018 and 30 June 2020, underwent whole-genome sequencing and antimicrobial susceptibility testing. Genomic data were linked to international travel data collected from routine case interviews. Travel to South Asia accounted for most cases, with 92.2% imported from seven primary countries (the top two were India, n = 87, and Pakistan, n = 12). A total of 17 S. Typhi genotypes were detected in the 2-year cohort, with 48.2% genotyped as part of global AMR lineages. Ciprofloxacin resistance was detected in two lineages, 3.3 and 4.3.1.2, all from cases with reported travel to India. Nearly all multidrug and extensively drug resistant isolates (90%) were from cases with reported travel to Pakistan in genotypes 4.3.1.1 and 4.3.1.1.P1. Extended spectrum beta-lactamases, blaCTX-M-15 and blaSHV-12, were detected in cases with travel to Pakistan and India, respectively. Linking epidemiological data with genomic studies of S. Typhi provides an opportunity to improve understanding of the emergence, spread and risk of drug-resistant S. Typhi infections and to better inform empirical treatment guidelines in returned travelers.


Asunto(s)
Fiebre Tifoidea , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Genómica , Humanos , Salmonella typhi/genética , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/epidemiología , Victoria
7.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33020158

RESUMEN

In Australia, cases of shigellosis usually occur in returned travelers from regions of shigellosis endemicity or in men who have sex with men. Resistance to multiple antibiotics has significantly increased in Shigella sonnei isolates and represents a significant public health concern. We investigate an outbreak of multidrug-resistant S. sonnei in Victoria, Australia. We undertook whole-genome sequencing of 54 extended-spectrum-beta-lactamase (ESBL)-producing S. sonnei isolates received at the Microbiological Diagnostic Unit Public Health Laboratory between January 2019 and March 2020. The population structure and antimicrobial resistance profiles were identified by genomic analyses, with 73 previously characterized Australian S. sonnei isolates providing context. Epidemiological data, including age and sex of the shigellosis cases, were also collected. There was a significant increase in cases of ESBL S. sonnei from July 2019. Most of the ESBL S. sonnei isolates (65%) fell within a single cluster that was predominantly comprised of male cases that were characterized by the presence of the blaCTX-M-27 gene conferring resistance to extended-spectrum cephalosporins. These isolates were also multidrug resistant, including resistance to azithromycin and co-trimoxazole and reduced susceptibility to ciprofloxacin. Our data uncovered a prolonged clonal outbreak of ESBL S. sonnei infection that was likely first introduced by returned travelers and has subsequently been circulating locally in Australia. The emergence of a local outbreak of ESBL S. sonnei with a multidrug-resistant profile, including reduced susceptibility to ciprofloxacin, represents a significant public health threat.


Asunto(s)
Disentería Bacilar , Minorías Sexuales y de Género , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brotes de Enfermedades , Disentería Bacilar/tratamiento farmacológico , Disentería Bacilar/epidemiología , Homosexualidad Masculina , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Shigella sonnei/genética , Victoria/epidemiología , beta-Lactamasas/genética
8.
J Clin Microbiol ; 57(9)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31315956

RESUMEN

Carbapenemase-producing Enterobacterales (CPE) are being increasingly reported in Australia, and integrated clinical and genomic surveillance is critical to effectively manage this threat. We sought to systematically characterize CPE in Victoria, Australia, from 2012 to 2016. Suspected CPE were referred to the state public health laboratory in Victoria, Australia, from 2012 to 2016 and examined using phenotypic, multiplex PCR and whole-genome sequencing (WGS) methods and compared with epidemiological metadata. Carbapenemase genes were detected in 361 isolates from 291 patients (30.8% of suspected CPE isolates), mostly from urine (42.1%) or screening samples (34.8%). IMP-4 (28.0% of patients), KPC-2 (25.3%), NDM (24.1%), and OXA carbapenemases (22.0%) were most common. Klebsiella pneumoniae (48.8% of patients) and Escherichia coli (26.1%) were the dominant species. Carbapenemase-inactivation method (CIM) testing reliably detected carbapenemase-positive isolates (100% sensitivity, 96.9% specificity), identifying an additional five CPE among 159 PCR-negative isolates (IMI and SME carbapenemases). When epidemiologic investigations were performed, all pairs of patients designated "highly likely" or "possible" local transmission had ≤23 pairwise single-nucleotide polymorphisms (SNPs) by genomic transmission analysis; conversely, all patient pairs designated "highly unlikely" local transmission had ≥26 pairwise SNPs. Using this proposed threshold, possible local transmission was identified involving a further 16 patients for whom epidemiologic data were unavailable. Systematic application of genomics has uncovered the emergence of polyclonal CPE as a significant threat in Australia, providing important insights to inform local public health guidelines and interventions. Using our workflow, pairwise SNP distances between CPE isolates of ≤23 SNPs suggest local transmission.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Transmisión de Enfermedad Infecciosa , Infecciones por Enterobacteriaceae/transmisión , Técnicas de Diagnóstico Molecular/métodos , Epidemiología Molecular/métodos , Anciano , Proteínas Bacterianas/genética , Técnicas Bacteriológicas , Enterobacteriaceae Resistentes a los Carbapenémicos/clasificación , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Infecciones por Enterobacteriaceae/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tipificación Molecular/métodos , Reacción en Cadena de la Polimerasa Multiplex , Victoria , Secuenciación Completa del Genoma , beta-Lactamasas/genética
10.
Am J Kidney Dis ; 64(6): 909-17, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24882583

RESUMEN

BACKGROUND: The risk of catheter-related infection or bacteremia, with initial and extended use of femoral versus nonfemoral sites for double-lumen vascular catheters (DLVCs) during continuous renal replacement therapy (CRRT), is unclear. STUDY DESIGN: Retrospective observational cohort study. SETTING & PARTICIPANTS: Critically ill patients on CRRT in a combined intensive care unit of a tertiary institution. FACTOR: Femoral versus nonfemoral venous DLVC placement. OUTCOMES: Catheter-related colonization (CRCOL) and bloodstream infection (CRBSI). MEASUREMENTS: CRCOL/CRBSI rates expressed per 1,000 catheter-days. RESULTS: We studied 458 patients (median age, 65 years; 60% males) and 647 DLVCs. Of 405 single-site only DLVC users, 82% versus 18% received exclusively 419 femoral versus 82 jugular or subclavian DLVCs, respectively. The corresponding DLVC indwelling duration was 6±4 versus 7±5 days (P=0.03). Corresponding CRCOL and CRBSI rates (per 1,000 catheter-days) were 9.7 versus 8.8 events (P=0.8) and 1.2 versus 3.5 events (P=0.3), respectively. Overall, 96 patients with extended CRRT received femoral-site insertion first with subsequent site change, including 53 femoral guidewire exchanges, 53 new femoral venipunctures, and 47 new jugular/subclavian sites. CRCOL and CRBSI rates were similar for all such approaches (P=0.7 and P=0.9, respectively). On multivariate analysis, CRCOL risk was higher in patients older than 65 years and weighing >90kg (ORs of 2.1 and 2.2, respectively; P<0.05). This association between higher weight and greater CRCOL risk was significant for femoral DLVCs, but not for nonfemoral sites. Other covariates, including initial or specific DLVC site, guidewire exchange versus new venipuncture, and primary versus secondary DLVC placement, did not significantly affect CRCOL rates. LIMITATIONS: Nonrandomized retrospective design and single-center evaluation. CONCLUSIONS: CRCOL and CRBSI rates in patients on CRRT are low and not influenced significantly by initial or serial femoral catheterizations with guidewire exchange or new venipuncture. CRCOL risk is higher in older and heavier patients, the latter especially so with femoral sites.


Asunto(s)
Infecciones Relacionadas con Catéteres/diagnóstico , Infecciones Relacionadas con Catéteres/epidemiología , Catéteres Venosos Centrales/efectos adversos , Vena Femoral , Terapia de Reemplazo Renal/efectos adversos , Terapia de Reemplazo Renal/instrumentación , Anciano , Catéteres Venosos Centrales/microbiología , Estudios de Cohortes , Femenino , Vena Femoral/microbiología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo
11.
Int J Infect Dis ; 138: 46-53, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967715

RESUMEN

OBJECTIVES: Whole genome sequencing (WGS) can identify clusters, transmission patterns, and drug resistance mutations. This is important in low-burden settings such as Australia, as it can assist in efficient contact tracing and surveillance. METHODS: We conducted a retrospective cohort study using WGS from 155 genomically defined drug-resistant Mycobacterium tuberculosis (DR-TB) isolates collected between 2018-2021 in Victoria, Australia. Bioinformatic analysis was performed to identify resistance-conferring mutations, lineages, clusters and understand how local sequences compared with international context. RESULTS: Of the 155 sequences, 42% were identified as lineage 2 and 35% as lineage 1; 65.8% (102/155) were isoniazid mono-resistant, 8.4% were multi-drug resistant TB and 5.8% were pre-extensively drug-resistant / extensively drug-resistant TB. The most common mutations were observed in katG and fabG1 genes, especially at Ser315Thr and fabG1 -15 C>T for first-line drugs. Ser450Leu was the most frequent mutation in rpoB gene. Phylogenetic analysis confirmed that Victorian DR-TB were associated with importation events. There was little evidence of local transmission with only five isolate pairs. CONCLUSION: Isoniazid-resistant TB is the commonest DR-TB in Victoria, and the mutation profile is similar to global circulating DR-TB. Most cases are diagnosed among migrants with limited transmission. This study highlights the value of WGS in identification of clusters and resistance-conferring mutations. This information is crucial in supporting disease mitigation and treatment strategies.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Isoniazida/uso terapéutico , Victoria/epidemiología , Filogenia , Estudios Retrospectivos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Secuenciación Completa del Genoma , Mutación , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
12.
Commun Biol ; 7(1): 349, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514781

RESUMEN

The past decade has seen an increase in the prevalence of sequence type (ST) 45 methicillin-resistant Staphylococcus aureus (MRSA), yet the underlying drivers for its emergence and spread remain unclear. To better understand the worldwide dissemination of ST45 S. aureus, we performed phylogenetic analyses of Australian isolates, supplemented with a global population of ST45 S. aureus genomes. Our analyses revealed a distinct lineage of multidrug-resistant ST45 MRSA harbouring qacA, predominantly found in Australia and Singapore. Bayesian inference predicted that the acquisition of qacA occurred in the late 1990s. qacA was integrated into a structurally variable region of the chromosome containing Tn552 (carrying blaZ) and Tn4001 (carrying aac(6')-aph(2")) transposable elements. Using mutagenesis and in vitro assays, we provide phenotypic evidence that qacA confers tolerance to chlorhexidine. These findings collectively suggest both antimicrobial resistance and the carriage of qacA may play a role in the successful establishment of ST45 MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus/genética , Teorema de Bayes , Filogenia , Infecciones Estafilocócicas/epidemiología , Proteínas de Transporte de Membrana/genética , Proteínas Bacterianas/genética , Australia
13.
J Clin Microbiol ; 51(5): 1396-401, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23408689

RESUMEN

Next-generation sequencing (NGS) of bacterial genomes has recently become more accessible and is now available to the routine diagnostic microbiology laboratory. However, questions remain regarding its feasibility, particularly with respect to data analysis in nonspecialist centers. To test the applicability of NGS to outbreak investigations, Ion Torrent sequencing was used to investigate a putative multidrug-resistant Escherichia coli outbreak in the neonatal unit of the Mercy Hospital for Women, Melbourne, Australia. Four suspected outbreak strains and a comparator strain were sequenced. Genome-wide single nucleotide polymorphism (SNP) analysis demonstrated that the four neonatal intensive care unit (NICU) strains were identical and easily differentiated from the comparator strain. Genome sequence data also determined that the NICU strains belonged to multilocus sequence type 131 and carried the bla(CTX-M-15) extended-spectrum beta-lactamase. Comparison of the outbreak strains to all publicly available complete E. coli genome sequences showed that they clustered with neonatal meningitis and uropathogenic isolates. The turnaround time from a positive culture to the completion of sequencing (prior to data analysis) was 5 days, and the cost was approximately $300 per strain (for the reagents only). The main obstacles to a mainstream adoption of NGS technologies in diagnostic microbiology laboratories are currently cost (although this is decreasing), a paucity of user-friendly and clinically focused bioinformatics platforms, and a lack of genomics expertise outside the research environment. Despite these hurdles, NGS technologies provide unparalleled high-resolution genotyping in a short time frame and are likely to be widely implemented in the field of diagnostic microbiology in the next few years, particularly for epidemiological investigations (replacing current typing methods) and the characterization of resistance determinants. Clinical microbiologists need to familiarize themselves with these technologies and their applications.


Asunto(s)
Infecciones por Escherichia coli/diagnóstico , Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Resistencia betalactámica/genética , Australia , Técnicas de Tipificación Bacteriana , Secuencia de Bases , ADN Bacteriano/análisis , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Genoma Bacteriano/genética , Genotipo , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Masculino , Meningitis Bacterianas/complicaciones , Tipificación de Secuencias Multilocus , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Infecciones Urinarias/complicaciones , beta-Lactamasas/genética
14.
Microb Genom ; 9(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37590046

RESUMEN

Pathogen genomics has transitioned rapidly from the research setting into a powerful tool now routinely used in public health microbiology, for surveillance, outbreak investigations and disease control. As these investigations can have significant public health, treatment and legal impacts, we must ensure the accuracy of these results through validation of testing processes. For laboratories working in this space, it is important to approach this work with a quality and accreditation framework in mind, working towards implementation of quality systems and test validation that meet international regulatory standards. Here we outline the key international standards and processes that lead toward accreditation for pathogen genomics.


Asunto(s)
Brotes de Enfermedades , Salud Pública , Brotes de Enfermedades/prevención & control , Acreditación , Genómica , Laboratorios
15.
Microbiol Spectr ; 11(1): e0417622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36602387

RESUMEN

Vibrio alginolyticus causes vibriosis of marine vertebrates, invertebrates, and humans, and while there have been several reports of multidrug resistance in V. alginolyticus, carbapenem resistance is rare. V. alginolyticus strain AUSMDU00064140 was isolated in Melbourne, Australia, from imported prawns. Routine genomic surveillance detected the presence of a full-length blaNDM-1 gene, subsequently shown to be collocated with additional acquired antimicrobial resistance genes on a resistance cassette on the largest chromosome, flanked by mobilization gene annotations. Comparisons to a previously described V. alginolyticus plasmid, pC1349, revealed differing gene content and arrangements between the resistance cassettes. Phylogenetic analysis was performed against a local and global data set (n = 109), demonstrating that AUSMDU00064140 was distinct and did not cluster with any other strains. Despite the presence of the complete blaNDM-1 gene and positive phenotypic assays for carbapenemase production, carbapenem MICs were low (meropenem MIC ≤0.5 mg/liter). However, it is still possible that this gene may be transferred to another species in the environment or a host, causing phenotypic carbapenem resistance and presenting a risk of great public health concern. IMPORTANCE Carbapenems are last-line antimicrobials, vital for use in human medicine. Antimicrobial resistance determinants such as blaNDM (New Delhi metallo-ß-lactamase producing) genes conferring resistance to the carbapenem class of antimicrobials, are typically found in Enterobacterales (first described in 2009 from a Klebsiella pneumoniae isolate). Our study shows that Vibrio alginolyticus isolated from cooked prawn is able to harbor antimicrobial resistance (AMR) genes of public health concern, specifically a chromosomally located blaNDM-1 gene, and there is the potential for transmission of resistance genes. This may be linked with antimicrobial use in low- and middle-income settings, which has typically been high, unregulated, or not reported. Many countries, including Thailand, have implemented national strategic plans to incorporate the World Health Organization (WHO)'s Global Action Plan (2015) recommendations of a global One Health approach, including increased resources for surveillance of antimicrobial usage and AMR; however, efficient antimicrobial surveillance systems incorporating genomic and phenotypic testing of isolates are still lacking in many jurisdictions.


Asunto(s)
Antibacterianos , Vibrio alginolyticus , Animales , Humanos , Antibacterianos/farmacología , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Filogenia , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos , Plásmidos/genética , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana
16.
Microb Genom ; 9(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37650865

RESUMEN

Inferring the spatiotemporal spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via Bayesian phylogeography has been complicated by the overwhelming sampling bias present in the global genomic dataset. Previous work has demonstrated the utility of metadata in addressing this bias. Specifically, the inclusion of recent travel history of SARS-CoV-2-positive individuals into extended phylogeographical models has demonstrated increased accuracy of estimates, along with proposing alternative hypotheses that were not apparent using only genomic and geographical data. However, as the availability of comprehensive epidemiological metadata is limited, many of the current estimates rely on sequence data and basic metadata (i.e. sample date and location). As the bias within the SARS-CoV-2 sequence dataset is extensive, the degree to which we can rely on results drawn from standard phylogeographical models (i.e. discrete trait analysis) that lack integrated metadata is of great concern. This is particularly important when estimates influence and inform public health policy. We compared results generated from the same dataset, using two discrete phylogeographical models: one including travel history metadata and one without. We utilized sequences from Victoria, Australia, in this case study for two unique properties. Firstly, the high proportion of cases sequenced throughout 2020 within Victoria and the rest of Australia. Secondly, individual travel history was collected from returning travellers in Victoria during the first wave (January to May) of the coronavirus disease 2019 (COVID-19) pandemic. We found that the implementation of individual travel history was essential for the estimation of SARS-CoV-2 movement via discrete phylogeography models. Without the additional information provided by the travel history metadata, the discrete trait analysis could not be fit to the data due to numerical instability. We also suggest that during the first wave of the COVID-19 pandemic in Australia, the primary driving force behind the spread of SARS-CoV-2 was viral importation from international locations. This case study demonstrates the necessity of robust genomic datasets supplemented with epidemiological metadata for generating accurate estimates from phylogeographical models in datasets that have significant sampling bias. For future work, we recommend the collection of metadata in conjunction with genomic data. Furthermore, we highlight the risk of applying phylogeographical models to biased datasets without incorporating appropriate metadata, especially when estimates influence public health policy decision making.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Filogeografía , COVID-19/epidemiología , Teorema de Bayes , Metadatos , Pandemias , Victoria
17.
Nat Commun ; 14(1): 60, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599823

RESUMEN

Realising the promise of genomics to revolutionise identification and surveillance of antimicrobial resistance (AMR) has been a long-standing challenge in clinical and public health microbiology. Here, we report the creation and validation of abritAMR, an ISO-certified bioinformatics platform for genomics-based bacterial AMR gene detection. The abritAMR platform utilises NCBI's AMRFinderPlus, as well as additional features that classify AMR determinants into antibiotic classes and provide customised reports. We validate abritAMR by comparing with PCR or reference genomes, representing 1500 different bacteria and 415 resistance alleles. In these analyses, abritAMR displays 99.9% accuracy, 97.9% sensitivity and 100% specificity. We also compared genomic predictions of phenotype for 864 Salmonella spp. against agar dilution results, showing 98.9% accuracy. The implementation of abritAMR in our institution has resulted in streamlined bioinformatics and reporting pathways, and has been readily updated and re-verified. The abritAMR tool and validation datasets are publicly available to assist laboratories everywhere harness the power of AMR genomics in professional practice.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Flujo de Trabajo , Farmacorresistencia Bacteriana/genética , Genómica , Biología Computacional , Pruebas de Sensibilidad Microbiana
18.
Microb Genom ; 9(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37471116

RESUMEN

Streptococcus pneumoniae is a major human pathogen and can cause a range of conditions from asymptomatic colonization to invasive pneumococcal disease (IPD). The epidemiology and distribution of IPD-causing serotypes in Australia has undergone large changes following the introduction of the 7-valent pneumococcal conjugate vaccine (PCV) in 2005 and the 13-valent PCV in 2011. In this study, to provide a contemporary understanding of the IPD causing population in Victoria, Australia, we aimed to examine the population structure and prevalence of antimicrobial resistance using whole-genome sequencing and comprehensive antimicrobial susceptibility data of 1288 isolates collected between 2018 and 2022. We observed high diversity among the isolates with 52 serotypes, 203 sequence types (STs) and 70 Global Pneumococcal Sequencing Project Clusters (GPSCs) identified. Serotypes contained in the 13v-PCV represented 35.3 % (n=405) of isolates. Antimicrobial resistance (AMR) to at least one antibiotic was identified in 23.8 % (n=358) of isolates with penicillin resistance the most prevalent (20.3 %, n=261 using meningitis breakpoints and 5.1 % n=65 using oral breakpoints). Of the AMR isolates, 28 % (n=101) were multidrug resistant (MDR) (resistant to three or more drug classes). Vaccination status of cases was determined for a subset of isolates with 34 cases classified as vaccine failure events (fully vaccinated IPD cases of vaccine serotype). However, no phylogenetic association with failure events was observed. Within the highly diverse IPD population, we identified six high-risk sub-populations of public health concern characterized by high prevalence, high rates of AMR and MDR, or serotype inclusion in vaccines. High-risk serotypes included serotypes 3, 19F, 19A, 14, 11A, 15A and serofamily 23. In addition, we present our data validating seroBA for in silico serotyping to facilitate ISO-accreditation of this test in routine use in a public health reference laboratory and have made this data set available. This study provides insights into the population dynamics, highlights non-vaccine serotypes of concern that are highly resistant, and provides a genomic framework for the ongoing surveillance of IPD in Australia which can inform next-generation IPD prevention strategies.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Serogrupo , Victoria/epidemiología , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Farmacorresistencia Microbiana , Antibacterianos/farmacología
19.
Nat Commun ; 14(1): 4830, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563113

RESUMEN

Serial intervals - the time between symptom onset in infector and infectee - are a fundamental quantity in infectious disease control. However, their estimation requires knowledge of individuals' exposures, typically obtained through resource-intensive contact tracing efforts. We introduce an alternate framework using virus sequences to inform who infected whom and thereby estimate serial intervals. We apply our technique to SARS-CoV-2 sequences from case clusters in the first two COVID-19 waves in Victoria, Australia. We find that our approach offers high resolution, cluster-specific serial interval estimates that are comparable with those obtained from contact data, despite requiring no knowledge of who infected whom and relying on incompletely-sampled data. Compared to a published serial interval, cluster-specific serial intervals can vary estimates of the effective reproduction number by a factor of 2-3. We find that serial interval estimates in settings such as schools and meat processing/packing plants are shorter than those in healthcare facilities.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Genómica , Trazado de Contacto , Victoria
20.
Nat Commun ; 13(1): 509, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082278

RESUMEN

Vancomycin-resistant Enterococcus faecium (VREfm) is a major nosocomial pathogen. Identifying VREfm transmission dynamics permits targeted interventions, and while genomics is increasingly being utilised, methods are not yet standardised or optimised for accuracy. We aimed to develop a standardized genomic method for identifying putative VREfm transmission links. Using comprehensive genomic and epidemiological data from a cohort of 308 VREfm infection or colonization cases, we compared multiple approaches for quantifying genetic relatedness. We showed that clustering by core genome multilocus sequence type (cgMLST) was more informative of population structure than traditional MLST. Pairwise genome comparisons using split k-mer analysis (SKA) provided the high-level resolution needed to infer patient-to-patient transmission. The more common mapping to a reference genome was not sufficiently discriminatory, defining more than three times more genomic transmission events than SKA (3729 compared to 1079 events). Here, we show a standardized genomic framework for inferring VREfm transmission that can be the basis for global deployment of VREfm genomics into routine outbreak detection and investigation.


Asunto(s)
Infección Hospitalaria/transmisión , Atención a la Salud , Enterococcus faecium/genética , Genoma Bacteriano , Infecciones por Bacterias Grampositivas/transmisión , Enterococos Resistentes a la Vancomicina/genética , Antibacterianos , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Ligasas de Carbono-Oxígeno/genética , Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Enterococcus faecium/clasificación , Enterococcus faecium/aislamiento & purificación , Genómica , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Vancomicina , Enterococos Resistentes a la Vancomicina/clasificación , Enterococos Resistentes a la Vancomicina/aislamiento & purificación , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA