Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 178(1): 75-87, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25669451

RESUMEN

Many mobile marine species are presumed to utilize a broad spectrum of habitats, but this seemingly generalist life history may arise from conspecifics specializing on distinct habitat alternatives to exploit foraging, resting/refuge, or reproductive opportunities. We acoustically tagged 34 red drum, and mapped sand, seagrass, marsh, or oyster (across discrete landscape contexts) use by each uniquely coded individual. Using 144,000 acoustic detections, we recorded differences in habitat use among red drum: proportional use of seagrass habitat ranged from 0 to 100%, and use of oyster-bottom types also varied among fish. WIC/TNW and IS metrics (previously applied vis-à-vis diet specialization) consistently indicated that a typical red drum overlapped >70% with population-level niche exploitation. Monte Carlo permutations showed these values were lower than expected had fish drawn from a common habitat-use distribution, but longitudinal comparisons did not provide evidence of temporally consistent individuality, suggesting that differences among individuals were plastic and not reflective of true specialization. Given the range of acoustic detections we captured (from tens to 1,000s per individual), which are substantially larger sample sizes than in many diet studies, we extended our findings by serially reducing or expanding our data in simulations to evaluate sample-size effects. We found that the results of null hypothesis testing for specialization were highly dependent on sample size, with thresholds in the relationship between sample size and associated P-values. These results highlight opportunities and potential caveats in exploring individuality in habitat use. More broadly, exploring individual specialization in fine-scale habitat use suggests that, for mobile marine species, movement behaviors over shorter (≤weeks), but not longer (≥months), timescales may serve as an underlying mechanism for other forms of resource specialization.


Asunto(s)
Conducta Animal , Ecosistema , Conducta Alimentaria , Peces , Fenotipo , Reproducción , Animales , Dieta , Ecología , Individualidad
2.
Science ; 352(6284): 423, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27102475

RESUMEN

Palmer et al and Swain et al suggest that our "extra mortality" time series is spurious. In response, we show that including temperature-dependent mortality improves abundance estimates and that warming waters reduce growth rates in Gulf of Maine cod. Far from being spurious, temperature effects on this stock are clear, and continuing to ignore them puts the stock in jeopardy.


Asunto(s)
Adaptación Fisiológica , Explotaciones Pesqueras , Gadus morhua/fisiología , Calentamiento Global , Animales
3.
Science ; 350(6262): 809-12, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26516197

RESUMEN

Several studies have documented fish populations changing in response to long-term warming. Over the past decade, sea surface temperatures in the Gulf of Maine increased faster than 99% of the global ocean. The warming, which was related to a northward shift in the Gulf Stream and to changes in the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation, led to reduced recruitment and increased mortality in the region's Atlantic cod (Gadus morhua) stock. Failure to recognize the impact of warming on cod contributed to overfishing. Recovery of this fishery depends on sound management, but the size of the stock depends on future temperature conditions. The experience in the Gulf of Maine highlights the need to incorporate environmental factors into resource management.


Asunto(s)
Adaptación Fisiológica , Explotaciones Pesqueras , Gadus morhua/fisiología , Calentamiento Global , Animales , Calor , Maine , Dinámica Poblacional
4.
PLoS One ; 5(8): e12444, 2010 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-20865156

RESUMEN

BACKGROUND: Humans have reduced the abundance of many large marine vertebrates, including whales, large fish, and sharks, to only a small percentage of their pre-exploitation levels. Industrial fishing and whaling also tended to preferentially harvest the largest species and largest individuals within a population. We consider the consequences of removing these animals on the ocean's ability to store carbon. METHODOLOGY/PRINCIPAL FINDINGS: Because body size is critical to our arguments, our analysis focuses on populations of baleen whales. Using reconstructions of pre-whaling and modern abundances, we consider the impact of whaling on the amount of carbon stored in living whales and on the amount of carbon exported to the deep sea by sinking whale carcasses. Populations of large baleen whales now store 9.1×10(6) tons less carbon than before whaling. Some of the lost storage has been offset by increases in smaller competitors; however, due to the relative metabolic efficiency of larger organisms, a shift toward smaller animals could decrease the total community biomass by 30% or more. Because of their large size and few predators, whales and other large marine vertebrates can efficiently export carbon from the surface waters to the deep sea. We estimate that rebuilding whale populations would remove 1.6×10(5) tons of carbon each year through sinking whale carcasses. CONCLUSIONS/SIGNIFICANCE: Even though fish and whales are only a small portion of the ocean's overall biomass, fishing and whaling have altered the ocean's ability to store and sequester carbon. Although these changes are small relative to the total ocean carbon sink, rebuilding populations of fish and whales would be comparable to other carbon management schemes, including ocean iron fertilization.


Asunto(s)
Ciclo del Carbono , Ballenas/metabolismo , Animales , Biomasa , Carbono/metabolismo , Secuestro de Carbono , Ecosistema , Explotaciones Pesqueras , Océanos y Mares , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA