Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Cancer ; 143(8): 1994-2007, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29756386

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is characterized by epithelial mutations in KRAS and prominent tumor-associated inflammation, including macrophage infiltration. But knowledge of early interactions between neoplastic epithelium and macrophages in PDA carcinogenesis is limited. Using a pancreatic organoid model, we found that the expression of mutant KRAS in organoids increased (i) ductal to acinar gene expression ratios, (ii) epithelial cells proliferation and (iii) colony formation capacity in vitro, and endowed pancreatic cells with the ability to generate neoplastic tumors in vivo. KRAS mutations induced a protumorigenic phenotype in macrophages. Altered macrophages decreased epithelial pigment epithelial derived factor (PEDF) expression and induced a cancerous phenotype. We validated our findings using annotated patient samples from The Cancer Genome Atlas (TCGA) and in our human PDA specimens. Epithelium-macrophage cross-talk occurs early in pancreatic carcinogenesis where KRAS directly induces cancer-related phenotypes in epithelium, and also promotes a protumorigenic phenotype in macrophages, in turn augmenting neoplastic growth.


Asunto(s)
Transformación Celular Neoplásica/genética , Células Epiteliales/patología , Macrófagos/patología , Mutación/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/patología , Células Epiteliales/metabolismo , Femenino , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Células RAW 264.7 , Neoplasias Pancreáticas
2.
Int J Mol Sci ; 17(12)2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27918452

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption-a frequent habit of majority of modern societies-increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption-another modern life style habit-in promoting alcohol-associated CRC. METHOD: TS4Cre × adenomatous polyposis coli (APC)lox468 mice underwent (a) an alcohol-containing diet while maintained on a normal 12 h light:12 h dark cycle; or (b) an alcohol-containing diet in conjunction with circadian disruption by once-weekly 12 h phase reversals of the light:dark (LD) cycle. Mice were sacrificed after eight weeks of full alcohol and/or LD shift to collect intestine samples. Tumor number, size, and histologic grades were compared between animal groups. Mast cell protease 2 (MCP2) and 6 (MCP6) histology score were analyzed and compared. Stool collected at baseline and after four weeks of experimental manipulations was used for microbiota analysis. RESULTS: The combination of alcohol and LD shifting accelerated intestinal polyposis, with a significant increase in polyp size, and caused advanced neoplasia. Consistent with a pathogenic role of stromal tryptase-positive mast cells in colon carcinogenesis, the ratio of mMCP6 (stromal)/mMCP2 (intraepithelial) mast cells increased upon LD shifting. Baseline microbiota was similar between groups, and experimental manipulations resulted in a significant difference in the microbiota composition between groups. CONCLUSIONS: Circadian disruption by Light:dark shifting exacerbates alcohol-induced polyposis and CRC. Effect of circadian disruption could, at least partly, be mediated by promoting a pro-tumorigenic inflammatory milieu via changes in microbiota.


Asunto(s)
Alcoholismo/complicaciones , Carcinogénesis/patología , Neoplasias Colorrectales/etiología , Inflamación/patología , Intestinos/microbiología , Intestinos/patología , Microbiota , Fotoperiodo , Animales , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Disbiosis/complicaciones , Disbiosis/microbiología , Disbiosis/patología , Células Epiteliales/patología , Conducta Alimentaria , Mastocitos/patología , Ratones
3.
Oncotarget ; 7(19): 28218-34, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27058416

RESUMEN

Pancreatic cancer is characterized by a pronounced fibro-inflammatory reaction that has been shown to contribute to cancer progression. Previous reports have demonstrated that pigment epithelium-derived factor (PEDF) has potent tumor suppressive effects in pancreatic cancer, though little is known about the mechanisms by which PEDF limits pancreatic tumorigenesis. We therefore employed human specimens, as well as mouse and in vitro models, to explore the effects of PEDF upon the pancreatic microenvironment. We found that PEDF expression is decreased in human pancreatic cancer samples compared to non-malignant tissue. Furthermore, PEDF-deficient patients displayed increased intratumoral inflammation/fibrosis. In mice, genetic ablation of PEDF increased cerulein-induced inflammation and fibrosis, and similarly enhanced these events in the background of oncogenic KRAS. In vitro, recombinant PEDF neutralized macrophage migration as well as inhibited macrophage-induced proliferation of tumor cells. Additionally, recombinant PEDF suppressed the synthesis of pro-inflammatory/pro-fibrotic cytokines both in vivo and in vitro, and reduced collagen I deposition and TGFß synthesis by pancreatic stellate cells, consistent with reduced fibrosis. Combined, our results demonstrate that PEDF limits pancreatic cancer progression by attenuating the fibro-inflammatory reaction, and makes restoration of PEDF signaling a potential therapeutic approach to study in pancreatic cancer.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neoplasias Pancreáticas/patología , Serpinas/metabolismo , Animales , Carcinogénesis/patología , Progresión de la Enfermedad , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/fisiología
4.
Org Lett ; 5(15): 2639-42, 2003 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-12868878

RESUMEN

[reaction: see text] The title compound 1, prepared from 1,4-cyclohexanedione monoethylene ketal, was treated with several reactive dienes, including diphenylisobenzofuran and 9,10-dihydro-11,12-dimethylene-9,10-ethanoanthracene. These [4 + 2] cycloadditions proceed with a strong kinetic bias for bonding to the dienophile from the direction syn to the tetrahydrofuranyl oxygen and consequently hold value in stereoselective synthesis.

5.
J Am Chem Soc ; 126(51): 16783-92, 2004 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-15612717

RESUMEN

The diastereofacial selectivity operating in Diels-Alder additions involving spirocyclic cross-conjugated cyclohexadienones with dienes of varying reactivity has been investigated. The study has included the ether series 1a-c as well as the lactone/ketone pair 2a/2b. In all cases, the preferred [4+2] cycloaddition pathway consisted of bonding from that pi-surface syn to the oxygen atom. 4-Substituted-4-methyl-2,5-cyclohexadienones (monocyclic systems) were also examined and found to undergo bond formation preferentially from the face bearing the more electron-withdrawing of the two groups at the 4 position. Kinetic parameters were determined for the cycloaddition of 1a and 2a to cyclopentadiene. The rate acceleration profile of solvents was in the order CF(3)CH(2)OH >> CH(3)CN approximately CH(2)Cl(2) for the production of 9a from 1a and CF(3)CH(2)OH >> CH(2)Cl(2) > CH(3)CN for the production of 21a from 2a, respectively. This spread in polarity had no major impact on product distribution, a phenomenon also reflected in the behavior of 4-substituted-4-methyl-2,5-cyclohexadienones under comparable conditions. Theoretical assessment of these experimental facts was undertaken at the HF/6-31G level. The facial selectivity is understandable in terms of the secondary interaction between the HOMO of the diene and LUMO of the dienophile as well as the effective hyperconjugation between the newly forming bond and the 4-anti-C-C sigma-orbital due to the more electron-donating bond, as defined by the Cieplak model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA