RESUMEN
In this study, we conducted a high-pressure investigation of Cu2-xSe nanostructures with pyramid- and plate-like morphologies, created through cation exchange from zinc-blende CdSe nanocrystals and wurtzite CdSe nanoplatelets respectively. Using a diamond anvil cell setup at the APS synchrotron, we observed the phase transitions in the Cu2-xSe nanostructures up to 40 GPa, identifying a novel CsCl-type lattice with Pm3Ì m symmetry above 4 GPa. This CsCl-type structure, previously unreported in copper selenides, was partially retained after decompression. Our results indicate that the initial crystalline structure of CdSe does not affect the stability of Cu2-xSe nanostructures formed via cation exchange. Both morphologies of Cu2-xSe sintered under compression, potentially contributing to the stabilization of the high-pressure phase through interfacial defects. These findings are significant for discovering new phases with potential applications in future technologies.
RESUMEN
Polymer templates play an essential role in the robust infiltration-based synthesis of functional multicomponent heterostructures with controlled structure, porosity, and composition. Such heterostructures are be used as hybrid organic-inorganic composites or as all-inorganic systems once the polymer templates are removed. Using iron oxide/alumina heterostructures formed by two-step infiltration of polystyrene-block-polyvinyl pyridine block copolymer with iron and aluminum precursors from the solution and vapor-phases, respectively, we show that the phase and morphology of iron oxide nanoparticles dramatically depend on the approach used to remove the polymer. We demonstrate that thermal and plasma oxidative treatments result in iron oxide nanoparticles with either solid or hollow morphologies, respectively, that lead to different magnetic properties of the resulting materials. Our study extends the boundaries of structure manipulations in multicomponent heterostructures synthesized using polymer infiltration synthesis, and hence their properties.
Asunto(s)
Nanopartículas/química , Nanoestructuras/química , Polímeros/química , Óxido de Aluminio/química , Compuestos Férricos/química , Magnetismo/métodos , Nanotecnología/métodos , Poliestirenos/química , Piridinas/químicaRESUMEN
When nanoparticles (NPs) are assembled from solution, a common assembly method of choice is either solution destabilization or solvent evaporation technique. The destabilization of the NP solution by non-solvents results in the formation of faceted supercrystals (SCs) while periodic film-like assemblies are typically formed by solvent evaporation. Here, we reveal the effect of non-solvents in washing, dispersing, and crystallizing NPs. Small angle neutron scattering (SANS) is employed for monitoring the ligand shell of NPs in solutions upon introduction of various non-solvents. The SC crystallization process is traced in situ with small-angle X-ray scattering (SAXS), and the structures of the resulting single-crystalline SCs are examined in detail by mapping the reciprocal space using SAXS and wide-angle X-ray scattering. Our study suggests that the relative miscibility of the non-solvent with solvents and ligands determines the solvation and thickness of the ligand shell and thereby the resulting structure of SCs. In the early stage of crystallization, truncated octahedral PbS NPs form SCs with face-centered cubic (fcc) symmetry. In the later stage, the fcc symmetry is preserved in the SC formed by larger (5.60 nm) NPs, but the SC assembled from smaller (4.14 nm) NPs undergoes a phase transition into body-centered cubic (bcc) lattice via Bain transformation, becoming a polycrystalline SC containing three structurally correlated bcc domains and one untransformed fcc domain. Our study provides the detailed understanding of the non-solvent effect that impacts beyond the formation of SCs, enabling the judicious selection of solvent/non-solvent mixtures for NP purification.
RESUMEN
Infiltration of the polymer templates with inorganic precursors using the selective vapor-phase infiltration approach, or sequential infiltration synthesis (SIS), allows the design of materials with advanced properties. Swelling of the block co-polymer (BCP) templates enables the additional control of the structure, porosity, and thickness of the composite or inorganic materials. Here, we use the highly precise quartz crystal microbalance (QCM) technique to investigate quantitatively the effect of the micelle opening by swelling and inorganic precursor infiltrating on the evolution of porosity in amphiphilic BCPs. We show that swelling of the polystyrene- block-poly-4-vinyl pyridine (PS- b-P4VP) BCP in ethanol at 75 °C occurs rapidly and results in a stable polymer structure in 30 min. By using an alumina model system, we found that swelling enables access to all available polar domains of the PS- b-P4VP film leading to an increase in the SIS-infiltrated alumina mass as compared to the nonswelled BCP layer. Our results demonstrate that swelling of the 110 nm thick BCP template results in the formation of 192 nm thick alumina films with 2 times larger alumina mass and 4 times larger effective pore volume than in case of the nonswelled sample. In the case of the thicker polymer template, the difference due to swelling becomes even more substantial because the fraction of accessible polymer is increased much more than in thin films. Our findings provide important insights into the mechanism of the infiltration of the inorganic precursors into swelled and nonswelled, spin-coated BCP templates enabling the design of highly porous thick ceramic films by SIS.
RESUMEN
Inorganic nanoporous materials with highly accessible pores are of great interest for the design of efficient catalytic, purification and detection systems. Limited access to the pores is a common problem associated with traditional approaches for the synthesis of porous materials, affecting the functionality of the low-density structure. Recently, infiltration of a nanoporous polymer template with inorganic precursors followed by oxidative annealing was proposed as a new and efficient approach to creating porous inorganic structures with controlled thickness, composition and pore sizes. Here, we report an ultra-high accessibility of the pores in porous films prepared via polymer-swelling-assisted sequential infiltration synthesis (SIS). Using a quartz crystal microbalance technique, we show the increased solvent adsorbing capabilities of highly porous alumina films as a result of high interconnectivity of the pores in such structures. The directionality and highly interconnected nature of the pores are demonstrated in experiments with the partial blocking of pore access by the deposition of a single-layer graphene that is not transparent to solvent. 60% of the pores remain accessible when only 20% of the surface is exposed to solvent. Using humidity detection as an example, we also show that highly porous alumina produced by polymer-swelling-assisted SIS is a promising candidate for sensing applications.
RESUMEN
Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design.
RESUMEN
To be able to control the functions of engineered multicomponent nanomaterials, a detailed understanding of heterogeneous nucleation at the nanoscale is essential. Here, by using in situ synchrotron X-ray scattering, we show that in the heterogeneous nucleation and growth of Au on Pt or Pt-alloy seeds the heteroepitaxial growth of the Au shell exerts high stress (â¼2 GPa) on the seed by forming a core/shell structure in the early stage of the reaction. The development of lattice strain and subsequent strain relaxation, which we show using atomic-resolution transmission electron microscopy to occur through the slip of {111} layers, induces morphological changes from a core/shell to a dumbbell structure, and governs the nucleation and growth kinetics. We also propose a thermodynamic model for the nucleation and growth of dumbbell metallic heteronanostructures.
RESUMEN
Botulinum neurotoxin (BoNT) presents a significant hazard under numerous realistic scenarios. The standard detection scheme for this fast-acting toxin is a lab-based mouse lethality assay that is sensitive and specific, but slow (â¼2 days) and requires expert administration. As such, numerous efforts have aimed to decrease analysis time and reduce complexity. Here, we describe a sensitive ratiometric fluorescence resonance energy transfer scheme that utilizes highly photostable semiconductor quantum dot (QD) energy donors and chromophore conjugation to compact, single chain variable antibody fragments (scFvs) to yield a fast, fieldable sensor for BoNT with a 20-40 pM detection limit, toxin quantification, adjustable dynamic range, sensitivity in the presence of interferents, and sensing times as fast as 5 min. Through a combination of mutations, we achieve stabilized scFv denaturation temperatures of more than 60 °C, which bolsters fieldability. We also describe adaptation of the assay into a microarray format that offers persistent monitoring, reuse, and multiplexing.
Asunto(s)
Toxinas Botulínicas/análisis , Puntos Cuánticos , Radiometría/métodos , Anticuerpos de Cadena Única/química , Transferencia Resonante de Energía de Fluorescencia , Límite de DetecciónRESUMEN
The discovery of quasicrystals in 1984 changed our view of ordered solids as periodic structures and introduced new long-range-ordered phases lacking any translational symmetry. Quasicrystals permit symmetry operations forbidden in classical crystallography, for example five-, eight-, ten- and 12-fold rotations, yet have sharp diffraction peaks. Intermetallic compounds have been observed to form both metastable and energetically stabilized quasicrystals; quasicrystalline order has also been reported for the tantalum telluride phase with an approximate Ta(1.6)Te composition. Later, quasicrystals were discovered in soft matter, namely supramolecular structures of organic dendrimers and tri-block copolymers, and micrometre-sized colloidal spheres have been arranged into quasicrystalline arrays by using intense laser beams that create quasi-periodic optical standing-wave patterns. Here we show that colloidal inorganic nanoparticles can self-assemble into binary aperiodic superlattices. We observe formation of assemblies with dodecagonal quasicrystalline order in different binary nanoparticle systems: 13.4-nm Fe(2)O(3) and 5-nm Au nanocrystals, 12.6-nm Fe(3)O(4) and 4.7-nm Au nanocrystals, and 9-nm PbS and 3-nm Pd nanocrystals. Such compositional flexibility indicates that the formation of quasicrystalline nanoparticle assemblies does not require a unique combination of interparticle interactions, but is a general sphere-packing phenomenon governed by the entropy and simple interparticle potentials. We also find that dodecagonal quasicrystalline superlattices can form low-defect interfaces with ordinary crystalline binary superlattices, using fragments of (3(3).4(2)) Archimedean tiling as the 'wetting layer' between the periodic and aperiodic phases.
RESUMEN
We report here detailed in situ studies of nucleation and growth of Au on CdSe/CdS nanorods using synchrotron SAXS technique and time-resolved spectroscopy. We examine structural and optical properties of CdSe/CdS/Au heterostructures formed under UV illumination. We compare the results for CdSe/CdS/Au heterostructures with the results of control experiments on CdSe/CdS nanorods exposed to gold precursor under conditions when no such heterostructures are formed (no UV illumination). Our data indicate similar photoluminescence (PL) quenching and PL decay profiles in both types of samples. Via transient absorption and PL, we show that such behavior is consistent with rapid (faster than 3 ps) hole trapping by gold-sulfur sites at the surface of semiconductor nanoparticles. This dominant process was overlooked in previous end-point studies on semiconductor/metal heterostructures.
RESUMEN
Photocatalytic self-cleaning coatings with a high surface area are important for a wide range of applications, including optical coatings, solar panels, mirrors, etc. Here, we designed a highly porous TiO2 coating with photoinduced self-cleaning characteristics and very high hydrophilicity. This was achieved using the swelling-assisted sequential infiltration synthesis (SIS) of a block copolymer (BCP) template, which was followed by polymer removal via oxidative thermal annealing. The quartz crystal microbalance (QCM) was employed to optimize the infiltration process by estimating the mass of material infiltrated into the polymer template as a function of the number of SIS cycles. This adopted swelling-assisted SIS approach resulted in a smooth uniform TiO2 film with an interconnected network of pores. The synthesized film exhibited good crystallinity in the anatase phase. The resulting nanoporous TiO2 coatings were tested for their functional characteristics. Exposure to UV irradiation for 1 h induced an improvement in the hydrophilicity of coatings with wetting angle reducing to unmeasurable values upon contact with water droplets. Furthermore, their self-cleaning characteristics were tested by measuring the photocatalytic degradation of methylene blue (MB). The synthesized porous TiO2 nanostructures displayed promising photocatalytic activity, demonstrating the degradation of approximately 92% of MB after 180 min under ultraviolet (UV) light irradiation. Thus, the level of performance was comparable to the photoactivity of commercial anatase TiO2 nanoparticles of the same quantity. Our results highlight a new robust approach for designing hydrophilic self-cleaning coatings with controlled porosity and composition.
RESUMEN
Li-O2 batteries (LOB) performance degradation ultimately occurs through the accumulation of discharge products and irreversible clogging of the porous electrode during the cycling. Electrode binder degradation in the presence of reduced oxygen species can result in additional coating of the conductive surface, exacerbating capacity fading. Herein, a facile method to fabricate free-standing is established, binder-free electrodes for LOBs in which multi-wall carbon nanotubes form cross-linked networks exhibiting high porosity, conductivity, and flexibility. These electrodes demonstrate high reproducibility upon cycling in LOBs. After cell death, efficient and inexpensive methods to wash away the accumulated discharge products are demonstrated, as reconditioning method. The second life usage of these electrodes is validated, without noticeable loss of performance. These findings aim to assist in the development of greener high energy density batteries while reducing manufacturing and recycling costs.
RESUMEN
Diamond anvil cell (DAC), synchrotron X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS) techniques are used to probe the composition inside hollow γ-Fe(3)O(4) nanoparticles (NPs). SAXS experiments on 5.2, 13.3, and 13.8 nm hollow-shell γ-Fe(3)O(4) NPs, and 6 nm core/14.8 nm hollow-shell Au/Fe(3)O(4) NPs, reveal the significantly high (higher than solvent) electron density of the void inside the hollow shell. In high-pressure DAC experiments using Ne as pressure-transmitting medium, formation of nanocrystalline Ne inside hollow NPs is not detected by XRD, indicating that the oxide shell is impenetrable. Also, FTIR analysis on solutions of hollow-shell γ-Fe(3)O(4) NPs fragmented upon refluxing shows no evidence of organic molecules from the void inside, excluding the possibility that organic molecules get through the iron oxide shell during synthesis. High-pressure DAC experiments on Au/Fe(3)O(4) core/hollow-shell NPs show good transmittance of the external pressure to the gold core, indicating the presence of the pressure-transmitting medium in the gap between the core and the hollow shell. Overall, our data reveal the presence of most likely small fragments of iron and/or iron oxide in the void of the hollow NPs. The iron oxide shell seems to be non-porous and impenetrable by gases and liquids.
RESUMEN
Experimental and theoretical studies on the compositional dependence of stability and compressibility in lithiated cubic titania are presented. The crystalline-to-amorphous phase transition pressure increases monotonically with Li concentration (from â¼17.5 GPa for delithiated to no phase transition for fully lithiated cubic titania up to 60 GPa). The associated enhancement in structural stability is postulated to arise from a vacancy filling mechanism in which an applied pressure drives interstitial Li ions to vacancy sites in the oxide interior. The results are of significance for understanding mechanisms of structural response of metal oxide electrode materials at high pressures as well as emerging energy storage technologies utilizing such materials.
RESUMEN
Material design in terms of their morphologies other than solid nanoparticles can lead to more advanced properties. At the example of iron oxide, we explored the electrochemical properties of hollow nanoparticles with an application as a cathode and anode. Such nanoparticles contain very high concentration of cation vacancies that can be efficiently utilized for reversible Li ion intercalation without structural change. Cycling in high voltage range results in high capacity (â¼132 mAh/g at 2.5 V), 99.7% Coulombic efficiency, superior rate performance (133 mAh/g at 3000 mA/g) and excellent stability (no fading at fast rate during more than 500 cycles). Cation vacancies in hollow iron oxide nanoparticles are also found to be responsible for the enhanced capacity in the conversion reactions. We monitored in situ structural transformation of hollow iron oxide nanoparticles by synchrotron X-ray absorption and diffraction techniques that provided us clear understanding of the lithium intercalation processes during electrochemical cycling.
RESUMEN
We systematically investigated the role of surface modification of nanoparticles catalyst in alkyne hydrogenation reactions and proposed the general explanation of effect of surface ligands on the selectivity and activity of Pt and Co/Pt nanoparticles (NPs) using experimental and computational approaches. We show that the proper balance between adsorption energetics of alkenes at the surface of NPs as compared to that of capping ligands defines the selectivity of the nanocatalyst for alkene in alkyne hydrogenation reaction. We report that addition of primary alkylamines to Pt and CoPt(3) NPs can drastically increase selectivity for alkene from 0 to more than 90% with ~99.9% conversion. Increasing the primary alkylamine coverage on the NP surface leads to the decrease in the binding energy of octenes and eventual competition between octene and primary alkylamines for adsorption sites. At sufficiently high coverage of catalysts with primary alkylamine, the alkylamines win, which prevents further hydrogenation of alkenes into alkanes. Primary amines with different lengths of carbon chains have similar adsorption energies at the surface of catalysts and, consequently, the same effect on selectivity. When the adsorption energy of capping ligands at the catalytic surface is lower than adsorption energy of alkenes, the ligands do not affect the selectivity of hydrogenation of alkyne to alkene. On the other hand, capping ligands with adsorption energies at the catalytic surface higher than that of alkyne reduce its activity resulting in low conversion of alkynes.
RESUMEN
The two-dimensional CsPbBr3 nanoplatelets have a quantum well electronic structure with a band gap tunable with sample thicknesses in discreet steps based upon the number of monolayers. The polarized optical properties of CsPbBr3 nanoplatelets are studied using fluorescence anisotropy and polarized transient absorption spectroscopies. Polarized spectroscopy shows that they have absorption and emission transitions which are strongly plane-polarized. In particular, photoluminescence excitation and transient absorption measurements reveal a band-edge polarization approaching 0.1, the limit of isotropic two-dimensional ensembles. The degree of anisotropy is found to depend on the thickness of the nanoplatelets: multiple measurements show a progressive decrease in optical anisotropy from 2 to 5 monolayer thick nanoplatelets. In turn, larger cuboidal CsPbBr3 nanocrystals, are found to have consistently positive anisotropy which may be attributed to symmetry breaking from ideal perovskite cubes. Optical measurements of anisotropy are described with respect to the theoretical framework developed to describe exciton fine structure in these materials. The observed planar absorption and emission are close to predicted values at thinner nanoplatelet sizes and follow the predicted trend in anisotropy with thickness, but with larger anisotropy than theoretical predictions. Dominant planar emission, albeit confined to the thinnest nanoplatelets, is a valuable attribute for enhanced efficiency of light-emitting devices.
RESUMEN
The conformal nanoporous inorganic coatings with accessible pores that are stable under applied thermal and mechanical stresses represent an important class of materials used in the design of sensors, optical coatings, and biomedical systems. Here, we synthesize porous AlOx and ZnO coatings by the sequential infiltration synthesis (SIS) of two types of polymers that enable the design of porous conformal coatings-polymers of intrinsic microporosity (PIM) and block co-polymer (BCP) templates. Using quartz crystal microbalance (QCM), we show that alumina precursors infiltrate both polymer templates four times more efficiently than zinc oxide precursors. Using the quartz crystal microbalance (QCM) technique, we provide a comprehensive study on the room temperature accessibility to water and ethanol of pores in block copolymers (BCPs) and porous polymer templates using polystyrene-block-poly-4-vinyl pyridine (PS75-b-P4VP25) and polymers of intrinsic microporosity (PIM-1), polymer templates modified by swelling, and porous inorganic coatings such as AlOx and ZnO synthesized by SIS using such templates. Importantly, we demonstrate that no structural damage occurs in inorganic nanoporous AlOx and ZnO coatings synthesized via infiltration of the polymer templates during the water freezing/melting cycling tests, suggesting excellent mechanical stability of the coatings, even though the hardness of the inorganic nanoporous coating is affected by the polymer and precursor selections. We show that the hardness of the coatings is further improved by their annealing at 900 °C for 1 h, though for all the cases except ZnO obtained using the BCP template, this annealing has a negligible effect on the porosity of the material, as is confirmed by the consistency in the optical characteristics. These findings unravel new potential for the materials being used across various environment and temperature conditions.
RESUMEN
Toward the goal of achieving superlubricity, or near-zero friction, in industrially relevant material systems, solution-processed multilayer Ti3C2Tx-MoS2 blends are spray-coated onto rough 52100-grade steel surfaces as a solid lubricant. The tribological performance was assessed in a ball-on-disk configuration in a unidirectional sliding mode. The test results indicate that Ti3C2Tx-MoS2 nanocomposites led to superlubricious states, which has hitherto been unreported for both individual pristine materials, MoS2 and Ti3C2Tx, under macroscale sliding conditions, indicating a synergistic mechanism enabling the superlative performance. The processing, structure, and property correlation were studied to understand the underlying phenomena. Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed the formation of an in situ robust tribolayer that was responsible for the performance at high contact pressures (>1.1 GPa) and sliding speeds (0.1 m/s). This report presents the lowest friction obtained by either MoS2 or MXene or any combination of the two so far.