Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Mater ; 21(8): 896-902, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835818

RESUMEN

The colour centre platform holds promise for quantum technologies, and hexagonal boron nitride has attracted attention due to the high brightness and stability, optically addressable spin states and wide wavelength coverage discovered in its emitters. However, its application is hindered by the typically random defect distribution and complex mesoscopic environment. Here, employing cathodoluminescence, we demonstrate on-demand activation and control of colour centre emission at the twisted interface of two hexagonal boron nitride flakes. Further, we show that colour centre emission brightness can be enhanced by two orders of magnitude by tuning the twist angle. Additionally, by applying an external voltage, nearly 100% brightness modulation is achieved. Our ab initio GW and GW plus Bethe-Salpeter equation calculations suggest that the emission is correlated to nitrogen vacancies and that a twist-induced moiré potential facilitates electron-hole recombination. This mechanism is further exploited to draw nanoscale colour centre patterns using electron beams.


Asunto(s)
Compuestos de Boro , Color
2.
Phys Rev Lett ; 124(20): 206403, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501077

RESUMEN

The synthesis of new materials with novel or useful properties is one of the most important drivers in the fields of condensed matter physics and materials science. Discoveries of this kind are especially significant when they point to promising future basic research and applications. van der Waals bonded materials comprised of lower-dimensional building blocks have been shown to exhibit emergent properties when isolated in an atomically thin form [1-8]. Here, we report the discovery of a transition metal chalcogenide in a heretofore unknown segmented linear chain form, where basic building blocks each consisting of two hafnium atoms and nine tellurium atoms (Hf_{2}Te_{9}) are van der Waals bonded end to end. First-principle calculations based on density functional theory reveal striking crystal-symmetry-related features in the electronic structure of the segmented chain, including giant spin splitting and nontrivial topological phases of selected energy band states. Atomic-resolution scanning transmission electron microscopy reveals single segmented Hf_{2}Te_{9} chains isolated within the hollow cores of carbon nanotubes, with a structure consistent with theoretical predictions. van der Waals bonded segmented linear chain transition metal chalcogenide materials could open up new opportunities in low-dimensional, gate-tunable, magnetic, and topological crystalline systems.

3.
Nano Lett ; 16(1): 320-5, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26707874

RESUMEN

We present a facile wet-chemistry method for efficient metal filling of the hollow inner cores of boron nitride nanotubes (BNNTs). The fillers conform to the cross-section of the tube cavity and extend in length from a few nm to hundreds of nm. The methodology is robust and is demonstrated for noble metals (Au, Pt, Pd, and Ag), transition metals (Co), and post-transition elements (In). Transmission electron microscopy and related electron spectroscopy confirm the composition and morphology of the filler nanoparticles. Up to 60% of BNNTs of a given preparation batch have some degree of metal encapsulation, and individual tubes can have up to 10% of their core volume filled during initial loading. The growth, movement, and fusing of metal nanoparticles within the BNNTs are also examined.

4.
Langmuir ; 28(8): 3695-8, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22320230

RESUMEN

Using scanning transmission electron microscopy we image ~4 nm platinum nanoparticles deposited on an insulating membrane, where the membrane is one of two electron-transparent windows separating an aqueous environment from the microscope's high vacuum. Upon receiving a relatively moderate dose of ~10(4) e/nm(2), initially immobile nanoparticles begin to move along trajectories that are directed radially outward from the center of the field of view. With larger dose rates the particle motion becomes increasingly dramatic. These observations demonstrate that, even under mild imaging conditions, the in situ electron microscopy of aqueous environments can produce electrophoretic charging effects that dominate the dynamics of nanoparticles under observation.


Asunto(s)
Microscopía Electrónica de Transmisión de Rastreo/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Agua/química
5.
Mater Horiz ; 8(1): 197-208, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821298

RESUMEN

Two-dimensional (2D) excitons arise from electron-hole confinement along one spatial dimension. Such excitations are often described in terms of Frenkel or Wannier limits according to the degree of exciton spatial localization and the surrounding dielectric environment. In hybrid material systems, such as the 2D perovskites, the complex underlying interactions lead to excitons of an intermediate nature, whose description lies somewhere between the two limits, and a better physical description is needed. Here, we explore the photophysics of a tuneable materials platform where covalently bonded metal-chalcogenide layers are spaced by organic ligands that provide confinement barriers for charge carriers in the inorganic layer. We consider self-assembled, layered bulk silver benzeneselenolate, [AgSePh]∞, and use a combination of transient absorption spectroscopy and ab initio GW plus Bethe-Salpeter equation calculations. We demonstrate that in this non-polar dielectric environment, strongly anisotropic excitons dominate the optical transitions of [AgSePh]∞. We find that the transient absorption measurements at room temperature can be understood in terms of low-lying excitons confined to the AgSe planes with in-plane anisotropy, featuring anisotropic absorption and emission. Finally, we present a pathway to control the exciton behaviour by changing the chalcogen in the material lattice. Our studies unveil unexpected excitonic anisotropies in an unexplored class of tuneable, yet air-stable, hybrid quantum wells, offering design principles for the engineering of an ordered, yet complex dielectric environment and its effect on the excitonic phenomena in such emerging materials.

6.
Sci Rep ; 10(1): 11602, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665582

RESUMEN

Atomically thin polycrystalline transition-metal dichalcogenides (TMDs) are relevant to both fundamental science investigation and applications. TMD thin-films present uniquely difficult challenges to effective nanoscale crystalline characterization. Here we present a method to quickly characterize the nanocrystalline grain structure and texture of monolayer WS2 films using scanning nanobeam electron diffraction coupled with multivariate statistical analysis of the resulting data. Our analysis pipeline is highly generalizable and is a useful alternative to the time consuming, complex, and system-dependent methodology traditionally used to analyze spatially resolved electron diffraction measurements.

7.
ACS Omega ; 2(7): 3681-3690, 2017 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457682

RESUMEN

Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2-3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mm × 100 µm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (µ) of which is 3 orders of magnitude higher than that of the disordered GSs. Moreover, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.

8.
Sci Rep ; 7(1): 15096, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118413

RESUMEN

We demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through an h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.

9.
Phys Rev B Condens Matter Mater Phys ; 87: 045417, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25242882

RESUMEN

Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA