RESUMEN
Pancreatic toxicity commonly affects the endocrine or exocrine pancreas. However, it can also occur at the endocrine-exocrine interface (EEI), where the capillary network of the islet merges with the capillaries of the surrounding acinar tissue, that is, the insulo-acinar portal system. The goal of this article is to describe a novel, test article-induced pancreatic toxicity that originated at the EEI and to summarize investigations into the mechanistic basis of the injury. This injury was initially characterized by light microscopy in 7/14 day-toxicity studies in Sprague-Dawley (Crl: CD®[SD]) rats with undisclosed test articles. Microvascular injury at the interface resulted in peri-islet serum exudation, fibrin deposition, hemorrhage, inflammation, and secondary degeneration/necrosis of surrounding exocrine tissue. More chronic injury presented as islet fibrosis and lobular atrophy. Direct cytotoxicity affecting the capillary endothelium at the EEI was confirmed ultrastructurally on day 4. Endothelial microparticle and blood flow studies further confirmed endothelial involvement. Similar lesions occurred less frequently in 2 other rat strains and not in the mouse, dog, or cynomolgus macaque. In summary, in vivo and investigative study data confirmed primary endothelial cytotoxicity in the pathogenesis of this lesion and suggested that the lesion may be rat/rat strain-specific and of uncertain relevance for human safety risk assessment.
Asunto(s)
Islotes Pancreáticos/efectos de los fármacos , Plomo/toxicidad , Páncreas Exocrino/efectos de los fármacos , Páncreas/efectos de los fármacos , Pancreatitis/patología , Animales , Capilares/efectos de los fármacos , Capilares/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Hemodinámica , Hemorragia/inducido químicamente , Hemorragia/patología , Islotes Pancreáticos/patología , Masculino , Páncreas/patología , Páncreas Exocrino/patología , Pancreatitis/inducido químicamente , Sistema Porta/efectos de los fármacos , Sistema Porta/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Medición de Riesgo , Pruebas de Toxicidad AgudaRESUMEN
In this study, a chronic yet synchronized version of the K/BxN mouse, the KRN-cell transfer model (KRN-CTM), was developed and extensively characterized. The transfer of purified splenic KRN T cells into T cell-deficient B6.TCR.Calpha(-/-)H-2(b/g7) mice induced anti-glucose 6-phosphate isomerase antibody-dependent chronic arthritis in 100% of the mice with uniform onset of disease 7 days after T cell transfer. Cellular infiltrations were assessed by whole-ankle transcript microarray, cytokine and chemokine levels, and microscopic and immunohistochemical analyses 7 through 42 days after T cell transfer. Transcripts identified an influx of monocytes/macrophages and neutrophils into the ankles and identified temporal progression of cartilage damage and bone resorption. In both serum and ankle tissue there was a significant elevation in interleukin-6, whereas macrophage inflammatory protein-1 alpha and monocyte chemotactic protein-1 were only elevated in tissue. Microscopic and immunohistochemical analyses revealed a time course for edema, synovial hypertrophy and hyperplasia, infiltration of F4/80-positive monocytes/macrophages and myeloperoxidase-positive neutrophils, destruction of articular cartilage, pannus invasion, bone resorption, extra-articular fibroplasia, and joint ankylosis. The KRN cell transfer model replicates many features of chronic rheumatoid arthritis in humans in a synchronized manner and lends itself to manipulation of adoptively transferred T cells and characterizing specific genes and T cell subsets responsible for rheumatoid arthritis pathogenesis and progression.
Asunto(s)
Artritis Reumatoide/patología , Modelos Animales de Enfermedad , Articulaciones/patología , Linfocitos T/patología , Linfocitos T/trasplante , Animales , Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inmunohistoquímica , Inflamación , Articulaciones/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Transgénicos , Monocitos/metabolismo , Monocitos/patología , Linfocitos T/metabolismoRESUMEN
Exposure to moderately selective p38alpha mitogen-activated protein kinase (MAPK) inhibitors in the Beagle dog results in an acute toxicity consisting of mild clinical signs (decreased activity, diarrhea, and fever), lymphoid necrosis and depletion in the gut-associated lymphoid tissue (GALT), mesenteric lymph nodes and spleen, and linear colonic and cecal mucosal hemorrhages. Lymphocyte apoptosis and necrosis in the GALT is the earliest and most prominent histopathologic change observed, followed temporally by neutrophilic infiltration and acute inflammation of the lymph nodes and spleen and multifocal mucosal epithelial necrosis and linear hemorrhages in the colon and cecum. These effects are not observed in the mouse, rat, or cynomolgus monkey. To further characterize the acute toxicity in the dog, a series of in vivo, in vitro, and immunohistochemical studies were conducted to determine the relationship between the lymphoid and gastrointestinal (GI) toxicity and p38 MAPK inhibition. Results of these studies demonstrate a direct correlation between p38alpha MAPK inhibition and the acute lymphoid and gastrointestinal toxicity in the dog. Similar effects were observed following exposure to inhibitors of MAPK-activated protein kinase-2 (MK2), further implicating the role of p38alpha MAPK signaling pathway inhibition in these effects. Based on these findings, the authors conclude that p38alpha MAPK inhibition results in acute lymphoid and GI toxicity in the dog and is unique among the species evaluated in these studies.