Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 629(Pt A): 1021-1031, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36152615

RESUMEN

Hydrogels are widely used as sensors in the field of wearable devices. However, the hydrogels were rarely designed to endure the harsh outdoor environment in winter, including extremely low temperature, ultraviolet (UV) radiation and variable humidity. In addition, physical damage is also a challenge for hydrogels. In this study, a self-healing hydrogel with adhesion was prepared as a sensor for winter sports using a one-pot method. Polyvinyl alcohol was used as the hydrogel matrix, providing the hydrogel preferable self-healing properties and adhesion to various surfaces such as porcine skin, metal, glass, and plastic. Lithium chloride was used for the chain entanglement of polyvinyl alcohol, forming a hydrogel with excellent ionic conductivity (24.29 S m-1 at room temperature, 13.45 S m-1 under -18 ℃) to detect human motion and temperature changes. Together with ethylene glycol, lithium chloride also provided successful water retention ability and frost resistance. The hydrogel remained stable after 30 d of storage at room temperature and -18 ℃. Sodium lignosulfonate was introduced to improve the mechanical properties and ultraviolet (UV) resistance of hydrogel, created nearly 100% UV shielding with a thickness of 0.5 mm. These advantages provide great potential to the hydrogel for application in flexible wearable devices for winter sports.


Asunto(s)
Hidrogeles , Alcohol Polivinílico , Humanos , Cloruro de Litio , Conductividad Eléctrica , Iones , Agua , Sodio , Glicoles de Etileno
2.
PeerJ ; 10: e14042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36132221

RESUMEN

Objective: The objective of this study was to investigate the inhibitory effect of sophocarpine on the progression of castration-resistant prostate cancer (CRPC) and the underlying molecular mechanism. Methods: DU145 and PC3 cells (two CRPC cell lines), incubated with different concentrations of sophocarpine, were used. Cell Counting Kit-8 assay, real-time cellular analysis, and colony formation assay were conducted to evaluate the proliferation of CRPC cells. Cytometry flow analysis was performed to evaluate the apoptosis rate of CRPC cells. Wound healing and Transwell invasion assays were performed and the levels of the epithelial-mesenchymal transition (EMT)-related proteins were determined to analyze cell migration and invasion abilities. A xenografted tumor model of nude mice was used to examine the anti-cancer effect of sophocarpine on CRPC. Western blotting was performed to evaluate the activities of the PI3K/AKT/mTOR signaling pathway both in cells and tumor tissues. Results: In vitro tests showed that sophocarpine suppressed the proliferation of CRPC cells, reduced the migration and invasion abilities, and increased the apoptosis rate. In vivo, sophocarpine decreased the weight and volume of tumor tissues. Mechanically, sophocarpine exerted its anti-cancer effects by inactivating PI3K/AKT/mTOR signaling. Conclusion: Sophocarpine inhibited the progression of CRPC by downregulating the PI3K/AKT/mTOR signaling pathway and showed a potential to be an anti-cancer agent against CRPC.


Asunto(s)
Alcaloides , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Alcaloides/farmacología
3.
Aging (Albany NY) ; 13(22): 24753-24767, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34821587

RESUMEN

Pancreatic cancer is an extremely malignant digestive tract tumor. With the increase of chemotherapeutic resistance of pancreatic cancer, clinical treatment is in a dilemma. Hence, it is pivotal to design an effective drug for treating individuals with pancreatic cancer. Fisetin extracted from vegetables, as well as fruits was explored to possess antioxidant, anti-cancer, anti-inflammatory along with anti-microbial properties. Nonetheless, there is limited research focusing on the utility of fisetin as an inhibitor of pancreatic cancer. Similarly, the mechanism through which Fisetin dampens pancreatic cancer remains unknown. This research work systematically evaluated the possible anti-cancer influences of fisetin in pancreatic cancer, as well as explored its responsible molecular mechanism. Our data revealed that fisetin obviously dampens pancreatic cancer progress in vitro along with in vivo dose-dependently. Furthermore, we established that fisetin repressed pancreatic cancer via explicitly targeting PI3K/AKT/mTOR signaling cascade and not the JAK2 cascade. Our data clarified that fisetin is a prospective anti-cancer drug for pancreatic cancer, as well as indicated the distinct molecular target of fisetin.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Flavonoles/farmacología , Neoplasias Pancreáticas , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Humanos , Invasividad Neoplásica/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
Insects ; 12(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34564231

RESUMEN

Excessive insecticide application has posed a threat to pollinators and has also increased insecticide resistance of Myzus persicae Sulzer. Therefore, it is urgent to develop an economical and effective strategy, especially for greenhouse vegetables. Firstly, we selected a neonicotinoid insecticide that is specifically fatal to M. persicae but relatively safe to predators and bumblebees by laboratory toxicity tests and risk assessments. Then, we tested the effectiveness of the neonicotinoid insecticide under different temperature conditions. According to the LC50 values and the hazard quotients, thiacloprid met the requirements. Greenhouse trails indicated that thiacloprid was quite efficient, while control dropped to 80% without the application of thiacloprid. As for biological control, Harmonia axyridis effectively controlled 90% of aphids with thiacloprid or not. However, Aphidoletes aphidimyza performed better above 20 °C. Our results indicated that it is cost-effective to control M. persicae with A. aphidimyza in suitable temperature conditions and H. axyridis was more effective at low temperatures. Practically, thiacloprid could be used either as an emergency option to control aphids' abundance alone or in combination with natural enemies.

5.
Phys Rev Lett ; 104(10): 100502, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20366406

RESUMEN

We demonstrate the collapse and revival features of the entanglement dynamics of different polarization-entangled photon states in a non-Markovian environment. Using an all-optical experimental setup, we show that entanglement can be revived even after it suffers from sudden death. A maximally revived state is shown to violate a Bell's inequality with 4.1 standard deviations which verifies its quantum nature. The revival phenomenon observed in this experiment provides an intriguing perspective on entanglement dynamics.

6.
Phys Rev Lett ; 103(24): 240502, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20366189

RESUMEN

We experimentally characterize the bipartite entanglement under one-sided open system dynamics and verify the recently formulated entanglement factorization law [Nature Phys. 4, 99 (2008)]. The one-sided open system dynamics is realized by implementing a phase damping and an amplitude decay channel, respectively, acting on one of the qubits, by an all-optical setup. Our results greatly simplify the characterization of entanglement dynamics and will play an important role in the construction of complex quantum networks.

7.
Huan Jing Ke Xue ; 40(4): 1834-1841, 2019 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-31087926

RESUMEN

La-modified RHBCs (La-RHBCs) were fabricated by immobilizing La(OH)3 nanoparticles on mesoporous rice husk biochars (RHBCs) using a co-precipitation method. Specifically, the effects of the pore structure of the RHBCs, solution pH, and coexisting substances on phosphate adsorption by the La-RHBCs were studied. The results showed that the La loading of the La-RHBCs was positively correlated with the mesoporosity of the RHBCs. La-modified RHBCs with higher mesoporosity hosts showed faster adsorption rates and lower leaching of La during phosphate adsorption. The adsorption process could be described by a pseudo second-order kinetic model, and the reaction rate was controlled by intraparticle diffusion. The Langmuir isotherm model fitted the adsorption process better, and the theoretical maximum adsorption capacities were 41.22, 43.26, and 45.62 mg·g-1, respectively. The high P/La molar ratios of more than 1.5 indicated the high utilization efficiencies of the La in the La-immobilized RHBCs. Moreover, phosphate could be effectively removed by the La-modified RHBCs over a wide pH range of 3-9. The La-modified RHBCs also exhibited good adsorption selectivity towards phosphate in the presence of coexisting anions and humic acids. Phosphate adsorption by the La-RHBCs was enhanced in the presence of Ca2+, while it was inhibited in the presence of Mg2+.

8.
Sci Total Environ ; 662: 511-520, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30699371

RESUMEN

Immobilizing La(OH)3 nanoparticles (NPs) to porous hosts has been widely applied to inhibiting their inherent aggregation as well as the subsequent low utilization efficiency of La. In this study, a series of rice husk biochars (RHBCs) with high mesoporous rates were prepared and the effects of host pore structure and point of zero charge (pHpzc) on phosphate adsorption by La-modified RHBCs was particularly focused. Characterization results confirmed that La(OH)3 NPs were both confined in the pore channel and external surface of RHBCs. Adsorption kinetics and isotherms showed that La-modified RHBCs with higher mesoporous rates of the host showed a faster adsorption rate and La-modified RHBCs exhibited superior La utilization efficiency than many reported La-incorporated adsorbents. Phosphate could be effectively captured over a wide pH of 3-10 due to the high pHpzc of La-modified RHBCs. Moreover, the La-modified RHBCs showed satisfactory affinity towards phosphate in the presence of coexisting anions and the phosphate adsorption by La-RHBC9 was enhanced in the presence of Ca2+, while it was inhibited in the presence of Mg2+. The mesoporous structure of RHBCs strengthened the stability of La-modified RHBCs and weakened the inhibition of coexisting humic substances on phosphate adsorption through the "shielding effect".


Asunto(s)
Carbón Orgánico/química , Hidróxidos/química , Lantano/química , Oryza/química , Fosfatos/análisis , Cinética , Nanopartículas del Metal/química , Porosidad , Eliminación de Residuos Líquidos/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA