Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916914

RESUMEN

Alternative splicing (AS) plays crucial roles in regulating various biological processes in plants. However, the genetic mechanisms underlying AS and its role in controlling important agronomic traits in rice (Oryza sativa) remain poorly understood. In this study, we explored AS in rice leaves and panicles using the rice minicore collection. Our analysis revealed a high level of transcript isoform diversity, with approximately one fifth of potential isoforms acting as major transcripts in both tissues. Regarding the genetic mechanism of AS, we found that the splicing of 833 genes in the leaf and 1,230 genes in the panicle was affected by cis-genetic variation. Twenty-one percent of these AS events could only be explained by large structural variations. Approximately 77.5% of genes with significant splicing quantitative trait loci (sGenes) exhibited tissue-specific regulation, and AS can cause 26.9% (leaf) and 23.6% (panicle) of sGenes to have altered, lost or gained functional domains. Additionally, through splicing-phenotype association analysis, we identified phosphate-starvation induced RING-type E3 ligase (OsPIE1; LOC_Os01g72480), whose splicing ratio was significantly associated with plant height. In summary, this study provides an understanding of AS in rice and its contribution to the regulation of important agronomic traits.

2.
Plant Biotechnol J ; 22(7): 1867-1880, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38363049

RESUMEN

N6-methyladenonsine (m6A) is the most prevalent internal modification of messenger RNA (mRNA) and plays critical roles in mRNA processing and metabolism. However, perturbation of individual m6A modification to reveal its function and the phenotypic effects is still lacking in plants. Here, we describe the construction and characterization of programmable m6A editing tools by fusing the m6A writers, the core catalytic domain of the MTA and MTB complex, and the AlkB homologue 5 (ALKBH5) eraser, to catalytically dead Cas13a (dCas13a) to edit individual m6A sites on mRNAs. We demonstrated that our m6A editors could efficiently and specifically deposit and remove m6A modifications on specific RNA transcripts in both Nicotiana benthamiana and Arabidopsis thaliana. Moreover, we found that targeting SHORT-ROOT (SHR) transcripts with a methylation editor could significantly increase its m6A levels with limited off-target effects and promote its degradation. This leads to a boost in plant growth with enlarged leaves and roots, increased plant height, plant biomass, and total grain weight in Arabidopsis. Collectively, these findings suggest that our programmable m6A editing tools can be applied to study the functions of individual m6A modifications in plants, and may also have potential applications for future crop improvement.


Asunto(s)
Adenosina , Arabidopsis , Nicotiana , Arabidopsis/genética , Nicotiana/genética , Nicotiana/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Plantas Modificadas Genéticamente/genética , Edición de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo
3.
J Integr Plant Biol ; 66(2): 196-207, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158885

RESUMEN

Rice (Oryza sativa) is a significant crop worldwide with a genome shaped by various evolutionary factors. Rice centromeres are crucial for chromosome segregation, and contain some unreported genes. Due to the diverse and complex centromere region, a comprehensive understanding of rice centromere structure and function at the population level is needed. We constructed a high-quality centromere map based on the rice super pan-genome consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. We showed that rice centromeres have diverse satellite repeat CentO, which vary across chromosomes and subpopulations, reflecting their distinct evolutionary patterns. We also revealed that long terminal repeats (LTRs), especially young Gypsy-type LTRs, are abundant in the peripheral CentO-enriched regions and drive rice centromere expansion and evolution. Furthermore, high-quality genome assembly and complete telomere-to-telomere (T2T) reference genome enable us to obtain more centromeric genome information despite mapping and cloning of centromere genes being challenging. We investigated the association between structural variations and gene expression in the rice centromere. A centromere gene, OsMAB, which positively regulates rice tiller number, was further confirmed by expression quantitative trait loci, haplotype analysis and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 methods. By revealing the new insights into the evolutionary patterns and biological roles of rice centromeres, our finding will facilitate future research on centromere biology and crop improvement.


Asunto(s)
ADN Satélite , Oryza , ADN Satélite/metabolismo , Oryza/genética , Oryza/metabolismo , Secuencia de Bases , Centrómero/genética , Genoma de Planta/genética
6.
Plant Commun ; 5(4): 100789, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38160258

RESUMEN

Plants are constantly exposed to microbial pathogens in the environment. One branch of innate plant immunity is mediated by cell-membrane-localized receptors, but less is known about associations between DNA damage and plant immune responses. Here, we show that rice (Oryza sativa) mesophyll cells are prone to DNA double-stranded breaks (DSBs) in response to ZJ173, a strain of Xanthomonas oryzae pv. oryzae (Xoo). The DSB signal transducer ataxia telangiectasia mutated (ATM), but not the ATM and Rad3-related branch, confers resistance against Xoo. Mechanistically, the MRE11-ATM module phosphorylates suppressor of gamma response 1 (SOG1), which activates several phenylpropanoid pathway genes and prompts downstream phytoalexin biosynthesis during Xoo infection. Intriguingly, overexpression of the topoisomerase gene TOP6A3 causes a switch from the classic non-homologous end joining (NHEJ) pathway to the alternative NHEJ and homologous recombination pathways at Xoo-induced DSBs. The enhanced ATM signaling of the alternative NHEJ pathway strengthens the SOG1-regulated phenylpropanoid pathway and thereby boosts Xoo-induced phytoalexin biosynthesis in TOP6A3-OE1 overexpression lines. Overall, the MRE11-ATM-SOG1 pathway serves as a prime example of plant-pathogen interactions that occur via host non-specific recognition. The function of TOP6-facilitated ATM signaling in the defense response makes it a promising target for breeding of rice germplasm that exhibits resistance to bacterial blight disease without a growth penalty.


Asunto(s)
Ataxia Telangiectasia , Oryza , Xanthomonas , Oryza/metabolismo , Fitoalexinas , Transducción de Señal
7.
Natl Sci Rev ; 11(6): nwae188, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962716

RESUMEN

Transposable elements (TEs) are ubiquitous genomic components and hard to study due to being highly repetitive. Here we assembled 232 chromosome-level genomes based on long-read sequencing data. Coupling the 232 genomes with 15 existing assemblies, we developed a pan-TE map comprising both cultivated and wild Asian rice. We detected 177 084 high-quality TE variations and inferred their derived state using outgroups. We found TEs were one source of phenotypic variation during rice domestication and differentiation. We identified 1246 genes whose expression variation was associated with TEs but not single-nucleotide polymorphisms (SNPs), such as OsRbohB, and validated OsRbohB's relative expression activity using a dual-Luciferase (LUC) reporter assays system. Our pan-TE map allowed us to detect multiple novel loci associated with agronomic traits. Collectively, our findings highlight the contributions of TEs to domestication, differentiation and agronomic traits in rice, and there is massive potential for gene cloning and molecular breeding by the high-quality Asian pan-TE map we generated.

8.
Natl Sci Rev ; 11(4): nwae043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38650829

RESUMEN

For sessile plants, gene expression plays a pivotal role in responding to salinity stress by activating or suppressing specific genes. However, our knowledge of genetic variations governing gene expression in response to salt stress remains limited in natural germplasm. Through transcriptome analysis of the Global Mini-Core Rice Collection consisting of a panel of 202 accessions, we identified 22 345 and 27 610 expression quantitative trait loci associated with the expression of 7787 and 9361 eGenes under normal and salt-stress conditions, respectively, leveraging the super pan-genome map. Notably, combined with genome-wide association studies, we swiftly pinpointed the potential candidate gene STG5-a major salt-tolerant locus known as qSTS5. Intriguingly, STG5 is required for maintaining Na+/K+ homeostasis by directly regulating the transcription of multiple members of the OsHKT gene family. Our study sheds light on how genetic variants influence the dynamic changes in gene expression responding to salinity stress and provides a valuable resource for the mining of salt-tolerant genes in the future.

9.
Plant Direct ; 7(12): e555, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38111714

RESUMEN

Proximity labeling was recently developed to detect protein-protein interactions and members of subcellular multiprotein structures in living cells. Proximity labeling is conducted by fusing an engineered enzyme with catalytic activity, such as biotin ligase, to a protein of interest (bait protein) to biotinylate adjacent proteins. The biotinylated protein can be purified by streptavidin beads, and identified by mass spectrometry (MS). TurboID is an engineered biotin ligase with high catalytic efficiency, which is used for proximity labeling. Although TurboID-based proximity labeling technology has been successfully established in mammals, its application in plant systems is limited. Here, we report the usage of TurboID for proximity labeling of FIP37, a core member of m6A methyltransferase complex, to identify FIP37 interacting proteins in Arabidopsis thaliana. By analyzing the MS data, we found 214 proteins biotinylated by GFP-TurboID-FIP37 fusion, including five components of m6A methyltransferase complex that have been previously confirmed. Therefore, the identified proteins may include potential proteins directly involved in the m6A pathway or functionally related to m6A-coupled mRNA processing due to spatial proximity. Moreover, we demonstrated the feasibility of proximity labeling technology in plant epitranscriptomics study, thereby expanding the application of this technology to more subjects of plant research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA