Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Integr Plant Biol ; 66(4): 749-770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38420861

RESUMEN

Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 186(2): 1288-1301, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33711162

RESUMEN

In many fruiting plant species, flower abscission is induced by low light stress. Here, we elucidated how signaling mediated by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) controls low light-induced flower drop in tomato (Solanum lycopersicum). We analyzed the expression patterns of an IDA-Like gene (SlIDL6) during low light-induced flower abscission, and used tandem mass spectrometry to identify and characterize the mature SlIDL6 peptide. Tomato knockout lines were created to investigate the in vivo function of SlIDL6. In addition, yeast one-hybrid assays were used to investigate the binding of the SlWRKY17 transcription factor to the SlIDL6 promoter, and silencing of SlWRKY17 expression delayed low light-induced flower abscission. SlIDL6 was specifically expressed in the abscission zone and at high levels during low light-induced abscission and ethylene treatment. SlIDL6 knockout lines showed delayed low light-induced flower drop, and the application of SlIDL6 peptide accelerated abscission. Overexpression of SlIDL6 rescued the ida mutant phenotype in Arabidopsis (Arabidopsis thaliana), suggesting functional conservation between species. SlIDL6-mediated abscission was via an ethylene-independent pathway. We report a SlWRKY17-SlIDL6 regulatory module that functions in low light promoted abscission by increasing the expression of enzymes involved in cell wall remodeling and disassembly.


Asunto(s)
Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Pared Celular/metabolismo , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Inflorescencia/genética , Inflorescencia/fisiología , Inflorescencia/efectos de la radiación , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant J ; 103(6): 2100-2118, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32573872

RESUMEN

Anther development and pollen tube elongation are key steps for pollination and fertilization. The timing and spatial distribution of reactive oxygen species (ROS) and programmed cell death are central to these processes, but the regulatory mechanism of ROS production is not well understood. Inflorescence deficient in abscission (IDA) is implicated in many plant development and responses to environmental stimuli. However, their role in reproductive development is still unknown. We generated tomato knockout lines (CR-slida) of an IDA homolog (SlIDA), which is expressed in the tapetum, septum and pollen tube, and observed a severe defect in male gametes. Further analysis indicated that there was a programmed cell death defect in the tapetum and septum and a failure of anther dehiscence in the CR-slida lines, likely related to insufficient ROS signal. Liquid chromatography-tandem mass spectrometry identified mature SlIDA as a 14-mer EPIP peptide, which was shown to be secreted, and a complementation experiment showed that application of a synthetic 14-mer EPIP peptide rescued the CR-slida defect and enhanced the ROS signal. Moreover, the application of the ROS scavengers diphenyleneiodonium or Mn-TMPP suppressed peptide function. Collectively, our results revealed that SlIDA plays an essential role in pollen development and pollen tube elongation by modulating ROS homeostasis.


Asunto(s)
Fertilización , Proteínas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/fisiología , Fertilización/fisiología , Flores/fisiología , Técnicas de Inactivación de Genes , Homeostasis , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubo Polínico/fisiología
4.
J Exp Bot ; 71(14): 4069-4082, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227110

RESUMEN

Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Litchi , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Etilenos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Litchi/genética , Litchi/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Nucleic Acids Res ; 42(12): 7971-80, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24920830

RESUMEN

RNA silencing is an evolutionarily conserved mechanism triggered by double-stranded RNA that is processed into 21- to 24-nt small interfering (si)RNA or micro (mi)RNA by RNaseIII-like enzymes called Dicers. Gene regulations by RNA silencing have fundamental implications in a large number of biological processes that include antiviral defense, maintenance of genome integrity and the orchestration of cell fates. Although most generic or core components of the various plant small RNA pathways have been likely identified over the past 15 years, factors involved in RNAi regulation through post-translational modifications are just starting to emerge, mostly through forward genetic studies. A genetic screen designed to identify factors required for RNAi in Arabidopsis identified the serine/threonine protein kinase, TOUSLED (TSL). Mutations in TSL affect exogenous and virus-derived siRNA activity in a manner dependent upon its kinase activity. By contrast, despite their pleiotropic developmental phenotype, tsl mutants show no defect in biogenesis or activity of miRNA or endogenous trans-acting siRNA. These data suggest a possible role for TSL phosphorylation in the specific regulation of exogenous and antiviral RNA silencing in Arabidopsis and identify TSL as an intrinsic regulator of RNA interference.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Arabidopsis/enzimología , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , ARN Pequeño no Traducido/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(13): 5235-40, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479623

RESUMEN

Throughout their life cycle, plants produce new organs, such as leaves, flowers, and lateral roots. Organs that have served their purpose may be shed after breakdown of primary cell walls between adjacent cell files at the site of detachment. In Arabidopsis, floral organs abscise after pollination, and this cell separation event is controlled by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Emergence of new lateral root primordia, initiated deep inside the root under the influence of auxin, is similarly dependent on cell wall dissolution between cells in the overlaying endodermal, cortical, and epidermal tissues. Here we show that this process requires IDA, HAE, and HSL2. Mutation in these genes constrains the passage of the growing lateral root primordia through the overlaying layers, resulting in altered shapes of the lateral root primordia and of the overlaying cells. The HAE and HSL2 receptors are redundant in function during floral organ abscission, but during lateral root emergence they are differentially involved in regulating cell wall remodeling genes. In the root, IDA is strongly auxin-inducible and dependent on key regulators of lateral root emergence--the auxin influx carrier LIKE AUX1-3 and AUXIN RESPONSE FACTOR7. The expression levels of the receptor genes are only transiently induced by auxin, suggesting they are limiting factors for cell separation. We conclude that elements of the same cell separation signaling module have been adapted to function in different developmental programs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Desarrollo de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutación , Raíces de Plantas/citología , Raíces de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Exp Bot ; 66(17): 5229-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26188203

RESUMEN

Plant roots are important for a wide range of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface with the soil environment. Several small signalling peptides and receptor kinases have been shown to affect primary root growth, but very little is known about their role in lateral root development. In this context, the CLE family, a group of small signalling peptides that has been shown to affect a wide range of developmental processes, were the focus of this study. Here, the expression pattern during lateral root initiation for several CLE family members is explored and to what extent CLE1, CLE4, CLE7, CLE26, and CLE27, which show specific expression patterns in the root, are involved in regulating root architecture in Arabidopsis thaliana is assessed. Using chemically synthesized peptide variants, it was found that CLE26 plays an important role in regulating A. thaliana root architecture and interacts with auxin signalling. In addition, through alanine scanning and in silico structural modelling, key residues in the CLE26 peptide sequence that affect its activity are pinpointed. Finally, some interesting similarities and differences regarding the role of CLE26 in regulating monocot root architecture are presented.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Triticum/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Brachypodium/metabolismo , Filogenia , Raíces de Plantas/metabolismo , Triticum/metabolismo
8.
Plant Cell ; 23(7): 2553-67, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742991

RESUMEN

Floral organ abscission in Arabidopsis thaliana is regulated by the putative ligand-receptor system comprising the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA and HAESA-LIKE2. The IDA signaling pathway presumably activates a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade to induce separation between abscission zone (AZ) cells. Misexpression of IDA effectuates precocious floral abscission and ectopic cell separation in latent AZ cell regions, which suggests that negative regulators are in place to prevent unrestricted and untimely AZ cell separation. Through a screen for mutations that restore floral organ abscission in ida mutants, we identified three new mutant alleles of the KNOTTED-LIKE HOMEOBOX gene BREVIPEDICELLUS (BP)/KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1). Here, we show that bp mutants, in addition to shedding their floral organs prematurely, have phenotypic commonalities with plants misexpressing IDA, such as enlarged AZ cells. We propose that BP/KNAT1 inhibits floral organ cell separation by restricting AZ cell size and number and put forward a model whereby IDA signaling suppresses BP/KNAT1, which in turn allows KNAT2 and KNAT6 to induce floral organ abscission.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Flores/fisiología , Proteínas de Homeodominio/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Proteínas de Homeodominio/genética , Mutación , Fenotipo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Imeta ; 3(2): e178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882492

RESUMEN

The advent of generative artificial intelligence (AI) technologies marks a transformative moment for the scientific sphere, unlocking novel avenues to elevate scientific writing's efficiency and quality, expedite insight discovery, and enhance code development processes. Essential to leveraging these advancements is prompt engineering, a method that enhances AI interaction efficiency and quality. Despite its benefits, effective application requires blending researchers' expertise with AI, avoiding overreliance. A balanced strategy of integrating AI with independent critical thinking ensures the advancement and quality of scientific research, leveraging innovation while maintaining research integrity.

10.
J Exp Bot ; 64(17): 5345-57, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23963677

RESUMEN

Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Pared Celular/metabolismo , Regulación hacia Abajo , Proteínas Activadoras de GTPasa/metabolismo , Perfilación de la Expresión Génica , Inflorescencia/anatomía & histología , Inflorescencia/genética , Inflorescencia/fisiología , Modelos Biológicos , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos/genética , Péptidos/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Transporte de Proteínas
11.
Hepatogastroenterology ; 60(121): 14-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23682387

RESUMEN

BACKGROUND/AIMS: The objective of this study was to explore the associations of expression of transporter associated with antigen processing 1 (TAP1) and tumor necrosis factor alpha (TNF-α with the occurrence and development of HBV-related hepatocellular carcinoma (HCC). METHODOLOGY: The expression of TAP1 and TNF-α in 38 HCC, 32 peritumor liver cirrhosis and 28 normal liver tissues, were assessed by immunohistochemical assay using tissue microarray technology. RESULTS: TAP1 and TNF-α were negative in normal liver tissue hut positive in HCC and peritumor cirrhosis tissue. There were no significant differences in the rates of positivity for TAP1 and TNF-α between HCC and peritumor cirrhosis tissue (p>0.05), but there was a significant difference when rates in HCC and peritumor cirrhosis tissue were compared with those in normal liver tissue (p<0.0001, p<0.01, respectively). The degree of differentiation of HCC was correlated with TNF-α expression (p<0.05), but not TAP1 expression (p>0.05), CONCLUSIONS: Major histocompatibility complex class I molecules are involved in HBV-related HCC. TNF-α plays an important role in liver cirrhosis and in formation and development of HCC following HBV infection. TNF-α can be used as an indicator of the degree of differentiation of HCC.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/análisis , Carcinoma Hepatocelular/química , Hepatitis B/complicaciones , Neoplasias Hepáticas/química , Análisis de Matrices Tisulares/métodos , Factor de Necrosis Tumoral alfa/análisis , Transportador de Casetes de Unión a ATP, Subfamilia B, Miembro 2 , Transportadoras de Casetes de Unión a ATP/fisiología , Adulto , Anciano , Carcinoma Hepatocelular/patología , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Factor de Necrosis Tumoral alfa/fisiología
12.
Yi Chuan ; 35(12): 1352-9, 2013 Dec.
Artículo en Zh | MEDLINE | ID: mdl-24645344

RESUMEN

Sn-glycerol-3-phosphate acyltransferase (GPAT) catalyzes the acylation at sn-1 position of glycerol-3-phosphate to produce lysophosphatidic acid (LPA) in an acyl-CoA or acyl-ACP-dependent manner, which is the initial and rate-determining step of TAG biosynthetic pathway. Some GPATs have sn-2 transfer activity. Part members of the GPAT gene family have been cloned from different plant species. Based on their subcellular localizations, GPATs can be classified into three types, plastid GPATs, mitochondria GPATs and endoplasmic reticulum GPATs. GPATs exhibit diverse biochemical properties and are involved in synthesis of several lipids such as TAG, suberin, and cutin which play important roles in the growth and development of plants. This review summarized the current understanding of the chromosomal locus and gene structure of GPAT genes and the subcellular localization, sn-2 regiospecificity, substrates specialty, and functions of GPATs in plants.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Plantas/enzimología , Plantas/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Plantas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
Trends Plant Sci ; 28(12): 1337-1339, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37690906

RESUMEN

BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor involved in the recognition of pattern-associated molecular patterns (PAMPs) via plasma membrane-localized pattern recognition receptors (PRRs). Absence of BAK1/SERK4 leads to the activation of autoimmunity in plants. Yu et al. recently showed that BAK-TO-LIFE 2 (BTL2) is required for the surveillance of BAK1/SERK4 integrity to maintain immune homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Inmunidad de la Planta/fisiología
14.
Imeta ; 2(1): e89, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868344

RESUMEN

Milestones of the first year of iMeta. iMeta is an open-access Wiley partner journal launched by iMeta Science Society consisting of worldwide scientists in bioinformatics and metagenomics. In 2022, iMeta released four issues, including 60 publications with a total of 340 citations. iMeta has been indexed in several databases, including Google Scholar, Crossref, CNKI, Dimensions, PubMed (partial), DOAJ, and Scopus. Thanks to the editorial board members and reviewers for their contributions to the iMeta in 2022.

15.
Acta Biochim Biophys Sin (Shanghai) ; 44(8): 712-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22695741

RESUMEN

Tumor necrosis factor-α (TNF-α) plays an important role in the pathogenesis and clinical outcome of chronic hepatitis B virus (HBV) infection. The objective of this study was to evaluate the relationship between functional polymorphisms of TNF-α and different outcomes of persistent HBV infection in a northeast Chinese Han population. Here 189 HBV spontaneously recovered subjects (SR), 571 HBV-infected patients including 180 chronic hepatitis B (CHB), 196 liver cirrhosis (LC), and 195 hepatocellular carcinoma (HCC) individuals were enrolled in this study. All the samples were genotyped for TNF-α -857C/T and -863C/A using the polymerase chain reaction-restriction fragment length polymorphism method. The frequency of -857CC genotype was significantly higher in CHB and LC individuals compared with that of SR subjects (P= 0.03, OR = 1.57, 95% CI 1.04-2.39 and P= 0.03, OR = 1.57, 95% CI 1.04-2.35, respectively). A significant difference in the distribution of the allele -857C was observed for both CHB vs. SR (P= 0.01, OR = 1.52, 95% CI 1.08-2.13) and LC vs. SR (P= 0.02, OR = 1.47, 95% CI 1.06-2.04) cohorts. In addition, the frequency of -863AA genotype was significantly higher in CHB and LC patients than that of SR subjects (P= 0.01, OR = 3.90, 95% CI 1.35-11.23 and P= 0.01, OR = 3.83, 95% CI 1.34-10.96, respectively), and allele -863A frequency was significantly more common in CHB, LC, and HCC cohorts than that of SR controls (P= 0.004, OR = 1.72, 95% CI 1.19-2.50; P= 0.001, OR = 1.81, 95% CI 1.26-2.61 and P= 0.001, OR = 1.90, 95% CI 1.33-2.73, respectively). Our data also revealed that haplotype CA was strongly associated with persistent HBV infection. These results suggest an association between the TNF-α promoter variants and different outcomes of persistent HBV infection in the studied population.


Asunto(s)
Virus de la Hepatitis B/genética , Hepatitis B/genética , Polimorfismo Genético , Regiones Promotoras Genéticas , Factor de Necrosis Tumoral alfa/genética , Adulto , Anciano , Alelos , China , Femenino , Genotipo , Hepatitis B/terapia , Hepatitis B/virología , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Resultado del Tratamiento
16.
Front Microbiol ; 13: 1019069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225366

RESUMEN

Plants are constantly exposed to diverse microbes and thus develop a sophisticated perceive system to distinguish non-self from self and identify non-self as friends or foes. Plants can detect microbes in apoplast via recognition of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) on the cell surface to activate appropriate signaling in response to microbes. MAMPs are highly conserved but essential molecules of microbes and often buried in microbes' complex structure. Mature MAMPs are released from microbes by invasion-induced hydrolytic enzymes in apoplast and accumulate in proximity of plasma membrane-localized PRRs to be perceived as ligands to activate downstream signaling. In response, microbes developed strategies to counteract these processing. Here, we review how the form, the concentration, and the size of mature MAMPs affect the PRR-mediated immune signaling. In particular, we describe some potential applications and explore potential open questions in the fields.

17.
18.
Plants (Basel) ; 8(7)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311120

RESUMEN

Plants both generate and shed organs throughout their lifetime. Cell separation is in function during opening of anthers to release pollen; floral organs are detached after pollination when they have served their purpose; unfertilized flowers are shed; fruits and seeds are abscised from the mother plant to secure the propagation of new generations. Organ abscission takes place in specialized abscission zone (AZ) cells where the middle lamella between adjacent cell files is broken down. The plant hormone ethylene has a well-documented promoting effect on abscission, but mutation in ethylene receptor genes in Arabidopsis thaliana only delays the abscission process. Microarray and RNA sequencing have identified a large number of genes differentially expressed in the AZs, especially genes encoding enzymes involved in cell wall remodelling and disassembly. Mutations in such genes rarely give a phenotype, most likely due to functional redundancy. In contrast, mutation in the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) blocks floral organ abscission in Arabidopsis. IDA encodes a small peptide that signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAE-LIKE2 (HSL2) to control floral organ abscission and facilitate lateral root emergence. Untimely abscission is a severe problem in many crops, and in a more applied perspective, it is of interest to investigate whether IDA-HAE/HSL2 is involved in other cell separation processes and other species. Genes encoding IDA and HSL2 orthologues have been identified in all orders of flowering plants. Angiosperms have had enormous success, with species adapted to all kinds of environments, adaptations which include variation with respect to which organs they shed. Here we review, from an evolutionary perspective, the properties of the IDA-HAE/HSL2 signaling module and the evidence for its hypothesized involvement in various cell separation processes in angiosperms.

19.
Methods Mol Biol ; 1744: 81-88, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29392657

RESUMEN

Petal breakstrength (pBS) is a method to study floral organ abscission by quantitating the force required to pull a petal from the receptacle. However, it is only well established in some labs and used in a subset of abscission studies. Here, we describe the mechanism and operation of the pBS meter, as well as detailed measurement and further data analysis. We show that it is a powerful tool to detect early or delayed floral organ abscission in mutant or transgenic plants, which is not easily detected by phenotypic investigation.


Asunto(s)
Envejecimiento , Arabidopsis/fisiología , Flores/fisiología , Fenotipo , Fenómenos Fisiológicos de las Plantas , Bioensayo , Genotipo , Plantas Modificadas Genéticamente
20.
Methods Mol Biol ; 1744: 321-328, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29392677

RESUMEN

Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/ultraestructura , Microscopía Electrónica de Rastreo , Fenotipo , Células Vegetales/ultraestructura , División Celular , Separación Celular , Microscopía Electrónica de Rastreo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA