Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(4): e202316449, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38059893

RESUMEN

Owing to outstanding performances, nickel-based electrocatalysts are commonly used in electrochemical alcohol oxidation reactions (AORs), and the active phase is usually vacancy-rich nickel oxide/hydroxide (NiOx Hy ) species. However, researchers are not aware of the catalytic role of atom vacancy in AORs. Here, we study vacancy-induced catalytic mechanisms for AORs on NiOx Hy species. As to AORs on oxygen-vacancy-poor ß-Ni(OH)2 , the only redox mediator is electrooxidation-induced electrophilic lattice oxygen species, which can only catalyze the dehydrogenation process (e.g., the electrooxidation of primary alcohol to carboxylic acid) instead of the C-C bond cleavage. Hence, vicinal diol electrooxidation reaction involving the C-C bond cleavage is not feasible with oxygen-vacancy-poor ß-Ni(OH)2 . Only through oxygen vacancy-induced adsorbed oxygen-mediated mechanism, can oxygen-vacancy-rich NiOx Hy species catalyze the electrooxidation of vicinal diol to carboxylic acid and formic acid accompanied with the C-C bond cleavage. Crucially, we examine how vacancies and vacancy-induced catalytic mechanisms work during AORs on NiOx Hy species.

2.
Angew Chem Int Ed Engl ; 62(37): e202307355, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37405901

RESUMEN

Co-based material catalysts have shown attractive application prospects in the 2 e- oxygen reduction reaction (ORR). However, for the industrial synthesis of H2 O2 , there is still lack of Co-based catalysts with high production yield rate. Here, novel cyclodextrin-supported Co(OH)2 cluster catalysts were prepared via a mild and facile method. The catalyst exhibited remarkable H2 O2 selectivity (94.2 % ~ 98.2 %), good stability (99 % activity retention after 35 h), and ultra-high H2 O2 production yield rate (5.58 mol gcatalyst -1 h-1 in the H-type electrolytic cell), demonstrating its promising industrial application potential. Density functional theory (DFT) reveals that the cyclodextrin-mediated Co(OH)2 electronic structure optimizes the adsorption of OOH* intermediates and significantly enhances the activation energy barrier for dissociation, leading to the high reactivity and selectivity for the 2 e- ORR. This work offers a valuable and practical strategy to design Co-based electrocatalysts for H2 O2 production.

3.
Angew Chem Int Ed Engl ; 62(49): e202313954, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37867149

RESUMEN

Due to the robust oxidation conditions in strong acid oxygen evolution reaction (OER), developing an OER electrocatalyst with high efficiency remains challenging in polymer electrolyte membrane (PEM) water electrolyzer. Recent theoretical research suggested that reducing the coordination number of Ir-O is feasible to reduce the energy barrier of the rate-determination step, potentially accelerating the OER. Inspired by this, we experimentally verified the Ir-O coordination number's role at model catalysts, then synthesized low-coordinated IrOx nanoparticles toward a durable PEM water electrolyzer. We first conducted model studies on commercial rutile-IrO2 using plasma-based defect engineering. The combined in situ X-ray absorption spectroscopy (XAS) analysis and computational studies clarify why the decreased coordination numbers increase catalytic activity. Next, under the model studies' guidelines, we explored a low-coordinated Ir-based catalyst with a lower overpotential of 231 mV@10 mA cm-2 accompanied by long durability (100 h) in an acidic OER. Finally, the assembled PEM water electrolyzer delivers a low voltage (1.72 V@1 A cm-2 ) as well as excellent stability exceeding 1200 h (@1 A cm-2 ) without obvious decay. This work provides a unique insight into the role of coordination numbers, paving the way for designing Ir-based catalysts for PEM water electrolyzers.

4.
Bioconjug Chem ; 31(3): 530-536, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32041403

RESUMEN

Herein, we report a star-architectured poly(ethylene glycol) (PEG)-oligonucleotide nanoconjugate of a well-defined molecular structure. Based upon fullerene C60 cores, each star bears precisely 1 DNA strand and 11 polymer chains. The elevated PEG density provides the DNA with steric selectivity: the DNA is significantly more resistant to nuclease digestion while remaining able to hybridize with a complementary sequence. The degree of resistance increases as the centers of mass for the DNA and fullerene are closer together. Such steric selectivity reduces protein-related background signals of the nanoflares synthesized from these miktoarm star polymers. Importantly, the stars improve cellular uptake and regulate gene expression as a non-cytotoxic, single-entity antisense agent without the need for a transfection carrier.


Asunto(s)
ADN/química , ADN/genética , Nanoestructuras/química , Polietilenglicoles/química , Línea Celular Tumoral , Fulerenos/química , Humanos , Modelos Moleculares , Conformación Molecular , Hibridación de Ácido Nucleico , Oligonucleótidos/química
5.
Angew Chem Int Ed Engl ; 59(43): 19215-19221, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32705755

RESUMEN

Co-based spinel oxides, which are of mixing valences with the presence of both Co2+ and Co3+ at different atom locations, are considered as promising catalysts for the electrochemical oxidation of 5-hydroxymethylfurfural (HMF). Identifying the role of each atom site in the electroxidation of HMF is critical to design the advanced electrocatalysts. In this work, we found that Co2+Td in Co3 O4 is capable of chemical adsorption for acidic organic molecules, and Co3+Oh play a decisive role in HMF oxidation. Thereafter, the Cu2+ was introduced in spinel oxides to enhance the exposure degree of Co3+ and to boost acidic adsorption and thus to enhance the electrocatalytic activity for HMF electrooxidation significantly.

6.
Natl Sci Rev ; 10(5): nwad099, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37287808

RESUMEN

Aqueous organic electrosynthesis such as nucleophile oxidation reaction (NOR) is an economical and green approach. However, its development has been hindered by the inadequate understanding of the synergy between the electrochemical and non-electrochemical steps. In this study, we unravel the NOR mechanism for the primary alcohol/vicinal diol electrooxidation on NiO. Thereinto, the electrochemical step is the generation of Ni3+-(OH)ads, and the spontaneous reaction between Ni3+-(OH)ads and nucleophiles is an electrocatalyst-induced non-electrochemical step. We identify that two electrophilic oxygen-mediated mechanisms (EOMs), EOM involving hydrogen atom transfer (HAT) and EOM involving C-C bond cleavage, play pivotal roles in the electrooxidation of primary alcohol to carboxylic acid and the electrooxidation of vicinal diol to carboxylic acid and formic acid, respectively. Based on these findings, we establish a unified NOR mechanism for alcohol electrooxidation and deepen the understanding of the synergy between the electrochemical and non-electrochemical steps during NOR, which can guide the sustainable electrochemical synthesis of organic chemicals.

7.
Adv Mater ; 34(27): e2105320, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35472674

RESUMEN

The nucleophile oxidation reaction (NOR) is of enormous significance for organic electrosynthesis and coupling for hydrogen generation. However, the nonuniform NOR mechanism limits its development. For the NOR, involving electrocatalysis and organic chemistry, both the electrochemical step and non-electrochemical process should be taken into account. The NOR of nickel-based hydroxides includes the electrogenerated dehydrogenation of the Ni2+ -OH bond and a spontaneous non-electrochemical process; the former determines the electrochemical activity, and the nucleophile oxidation pathway depends on the latter. Herein, the space-confinement-induced synthesis of Ni3 Fe layered double hydroxide intercalated with single-atom-layer Pt nanosheets (Ni3 Fe LDH-Pt NS) is reported. The synergy of interlayer Pt nanosheets and multiple defects activates Ni-OH bonds, thus exhibiting an excellent NOR performance. The spontaneous non-electrochemical steps of the NOR are revealed, such as proton-coupled electron transfer (PCET; Ni3+ -O + X-H = Ni2+ -OH + X• ), hydration, and rearrangement. Hence, the reaction pathway of the NOR is deciphered, which not only helps to perfect the NOR mechanism, but also provides inspiration for organic electrosynthesis.

8.
ACS Macro Lett ; 8(4): 399-402, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35651122

RESUMEN

Herein, we report a poly(benzyl ether)-based self-immolative polymer (SIP) with pendant pyridine disulfide groups. Cleavage of the side-chain disulfides leads to the formation of phenolates, which initiate depolymerization from the side chain. Due to the higher density of the disulfide groups compared to that of the chain-end-capping group, which normally is responsible for initiating depolymerization of SIPs, the side chain-immolative polymer (ScIP) can be readily degraded in the solid state where the mobility of polymer chains is substantially limited. The ScIP was also further modified through the thiol-disulfide exchange reaction to prepare ScIP-g-poly(ethylene glycol) graft polymers and organogels, which were also able to undergo complete reductive self-immolative degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA