Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; 20(15): e2308278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009756

RESUMEN

Designing cost-efffective electrocatalysts for the oxygen evolution reaction (OER) holds significant importance in the progression of clean energy generation and efficient energy storage technologies, such as water splitting and rechargeable metal-air batteries. In this work, an OER electrocatalyst is developed using Ni and Fe precursors in combination with different proportions of graphene oxide. The catalyst synthesis involved a rapid reduction process, facilitated by adding sodium borohydride, which successfully formed NiFe nanoparticle nests on graphene support (NiFe NNG). The incorporation of graphene support enhances the catalytic activity, electron transferability, and electrical conductivity of the NiFe-based catalyst. The NiFe NNG catalyst exhibits outstanding performance, characterized by a low overpotential of 292.3 mV and a Tafel slope of 48 mV dec-1, achieved at a current density of 10 mA cm- 2. Moreover, the catalyst exhibits remarkable stability over extended durations. The OER performance of NiFe NNG is on par with that of commercial IrO2 in alkaline media. Such superb OER catalytic performance can be attributed to the synergistic effect between the NiFe nanoparticle nests and graphene, which arises from their large surface area and outstanding intrinsic catalytic activity. The excellent electrochemical properties of NiFe NNG hold great promise for further applications in energy storage and conversion devices.

2.
Chem Soc Rev ; 49(11): 3484-3524, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32342064

RESUMEN

The urgent need to address the high-cost issue of proton-exchange membrane fuel cell (PEMFC) technologies, particularly for transportation applications, drives the development of simultaneously highly active and durable platinum group metal-free (PGM-free) catalysts and electrodes. The past decade has witnessed remarkable progress in exploring PGM-free cathode catalysts for the oxygen reduction reaction (ORR) to overcome sluggish kinetics and catalyst instability in acids. Among others, scientists have identified the newly emerging atomically dispersed transition metal (M: Fe, Co, or/and Mn) and nitrogen co-doped carbon (M-N-C) catalysts as the most promising alternative to PGM catalysts. Here, we provide a comprehensive review of significant breakthroughs, remaining challenges, and perspectives regarding the M-N-C catalysts in terms of catalyst activity, stability, and membrane electrode assembly (MEA) performance. A variety of novel synthetic strategies demonstrated effectiveness in improving intrinsic activity, increasing active site density, and attaining optimal porous structures of catalysts. Rationally designing and engineering the coordination environment of single metal MNx sites and their local structures are crucial for enhancing intrinsic activity. Increasing the site density relies on the innovative strategies of restricting the migration and agglomeration of single metal sites into metallic clusters. Relevant understandings provide the correlations among the nature of active sites, nanostructures, and catalytic activity of M-N-C catalysts at the atomic scale through a combination of experimentation and theory. Current knowledge of the transferring catalytic properties of M-N-C catalysts to MEA performance is limited. Rationally designing morphologic features of M-N-C catalysts play a vital role in boosting electrode performance through exposing more accessible active sites, realizing uniform ionomer distribution, and facilitating mass/proton transports. We outline future research directions concerning the comprehensive evaluation of M-N-C catalysts in MEAs. The most considerable challenge of current M-N-C catalysts is the unsatisfied stability and rapid performance degradation in MEAs. Therefore, we further discuss practical methods and strategies to mitigate catalyst and electrode degradation, which is fundamentally essential to make M-N-C catalysts viable in PEMFC technologies.

3.
Angew Chem Int Ed Engl ; 60(17): 9516-9526, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33492674

RESUMEN

We elucidate the structural evolution of CoN4 sites during thermal activation by developing a zeolitic imidazolate framework (ZIF)-8-derived carbon host as an ideal model for Co2+ ion adsorption. Subsequent in situ X-ray absorption spectroscopy analysis can dynamically track the conversion from inactive Co-OH and Co-O species into active CoN4 sites. The critical transition occurs at 700 °C and becomes optimal at 900 °C, generating the highest intrinsic activity and four-electron selectivity for the oxygen reduction reaction (ORR). DFT calculations elucidate that the ORR is kinetically favored by the thermal-induced compressive strain of Co-N bonds in CoN4 active sites formed at 900 °C. Further, we developed a two-step (i.e., Co ion doping and adsorption) Co-N-C catalyst with increased CoN4 site density and optimized porosity for mass transport, and demonstrated its outstanding fuel cell performance and durability.

4.
Chem Soc Rev ; 48(12): 3181-3192, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31112142

RESUMEN

The oxygen evolution reaction (OER) is a kinetically sluggish anodic reaction and requires a large overpotential to deliver appreciable current. Despite the fact that non-precious metal-based alkaline water electrocatalysts are receiving increased attention, noble metal-based electrocatalysts (NMEs) applied in proton exchange membrane water electrolyzers still have advantageous features of larger current and power densities with lower stack cost. Engineering NMEs for OER catalysis with high efficiency, durability and utilization rate is of vital importance in promoting the development of cost-effective renewable energy production and conversion devices. In this tutorial review, we covered the recent progress in the composition and structure optimization of NMEs for OER including Ir- and Ru-based oxides and alloys, and noble-metals beyond Ir and Ru with a variety of morphologies. To shed light on the fundamental science and mechanisms behind composition/structure-performance relationships and activity-stability relationships, integrated experimental and theoretical studies were pursued for illuminating the metal-support interaction, size effect, heteroatom doping effect, phase transformation, degradation processes and single-atom catalysis. Finally, the challenges and outlook are provided for guiding the rational engineering of OER electrocatalysts for applications in renewable energy-related devices.

5.
Angew Chem Int Ed Engl ; 59(48): 21698-21705, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-32820860

RESUMEN

Atomically dispersed and nitrogen coordinated single metal sites (M-N-C, M=Fe, Co, Ni, Mn) are the popular platinum group-metal (PGM)-free catalysts for many electrochemical reactions. Traditional wet-chemistry catalyst synthesis often requires complex procedures with unsatisfied reproducibility and scalability. Here, we report a facile chemical vapor deposition (CVD) strategy to synthesize the promising M-N-C catalysts. The deposition of gaseous 2-methylimidazole onto M-doped ZnO substrates, followed by an in situ thermal activation, effectively generated single metal sites well dispersed into porous carbon. In particular, an optimal CVD-derived Fe-N-C catalyst exclusively contains atomically dispersed FeN4 sites with increased Fe loading relative to other catalysts from wet-chemistry synthesis. The catalyst exhibited outstanding oxygen-reduction activity in acidic electrolytes, which was further studied in proton-exchange membrane fuel cells with encouraging performance.

6.
Anal Chem ; 91(21): 13986-13993, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31486634

RESUMEN

Conventional lateral flow biosensing technologies face the dual formidable challenges of poor sensitivity and cumbersome quantitative devices. Here, we developed a Au@Pd nanopopcorn and aptamer nanoflower assisted lateral flow strip (ANAN-LFS) with a thermal signal output to improve detection sensitivity. Moreover, a smartphone-based thermal reader was designed and meticulously optimized to hand-held style, realizing the essential portability of this quantitative device. Experimental studies revealed that the synthesized Au@Pd nanopopcorns clearly red-shifted into the near-infrared region, thus resulting in a higher photothermal response than the standard gold nanoparticles. Aptamer nanoflowers enhanced the system's biorecognition ability significantly compared with single-stranded aptamers due to their functional spatial structure, thus resulting in an even greater improvement in the sensitivity of the ANAN-LFS. With exosomes as model targets, the limit of detection (LOD) was calculated to be 1.4 × 104 exosomes/µL, which exhibited a 71-fold improved analytical performance. The feasibility of this system for detecting spiked biological samples at clinical concentrations was also confirmed. These results suggest that the proposed strategy of integrating a ANAN-LFS with a smartphone-based thermal reader has great potential as a powerful tool for bioanalytical applications, offering the combined unique advantages of high sensitivity and expedient portability.


Asunto(s)
Aptámeros de Nucleótidos/química , Exosomas/química , Nanopartículas/química , Tiras Reactivas/química , Temperatura , Técnicas Biosensibles , Oro/química , Humanos , Paladio/química , Tamaño de la Partícula , Propiedades de Superficie
7.
Small ; 15(43): e1902485, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31468663

RESUMEN

Substantial progress has been made in applying nanotubes in biomedical applications such as bioimaging and drug delivery due to their unique architecture, characterized by very large internal surface areas and high aspect ratios. However, the biomedical applications of organic nanotubes, especially for those assembled from sequence-defined molecules, are very uncommon. In this paper, the synthesis of two new peptoid nanotubes (PepTs1 and PepTs2) is reported by using sequence-defined and ligand-tagged peptoids as building blocks. These nanotubes are highly robust due to sharing a similar structure to those of nontagged ones, and offer great potential to hold guest molecules for biomedical applications. The findings indicate that peptoid nanotubes loaded with doxorubicin drugs are promising candidates for targeted tumor cell imaging and chemo-photodynamic therapy.


Asunto(s)
Biomimética , Nanotubos/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Peptoides/farmacología , Fotoquimioterapia , Línea Celular Tumoral , Doxorrubicina/farmacología , Endocitosis/efectos de los fármacos , Humanos , Ligandos , Peptoides/química
8.
Environ Sci Technol ; 53(5): 2612-2617, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30672699

RESUMEN

A simple and rapid process of ReO4- (as a surrogate of TcO4-) removal from aqueous solutions based on the electrically switched ion exchange (ESIX) method has been demonstrated in this work. Activated carbon-Polypyrrole (AC-PPy) was synthesized from activated carbon and pyrrole by electrodeposition method which was served as an electrically switched ion exchanger for ReO4- removal. The characterization results show that the AC-PPy composite exhibited an excellent loading capacity and a high stability for ions uptake and release. Chronoamperometric studies show that the ESIX treatment could be completed within 60 s, demonstrating the rapid uptake and release of ions. Uptake and release of ReO4- was verified by electrochemical quartz crystal microbalance with dissipation shift (EQCMD) studies. By modulating the electrochemical potential of the AC-PPy, the uptake and release of ReO4- ions can be controlled. Similar trends of uptake and release of ReO4- were observed in cyclic voltammetry (-0.4 to 0.8 V) for five cycles with the EQCMD. X-ray photoelectron spectroscopy (XPS) confirmed the process of ReO4- removal in the AC-PPy composite. Conclusively, the smart material shows excellent efficiency and selectivity for the removal of ReO4- from aqueous solutions.


Asunto(s)
Polímeros , Pirroles , Carbono , Intercambio Iónico , Agua
9.
Small ; 13(15)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28165196

RESUMEN

Self-assembled M-N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe-N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.

10.
Small ; 13(33)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28656598

RESUMEN

Rational design of high active and robust nonprecious metal catalysts with excellent catalytic efficiency in oxygen evolution reaction (OER) is extremely vital for making the water splitting process more energy efficient and economical. Among these noble metal-free catalysts, transition-metal-based nanomaterials are considered as one of the most promising OER catalysts due to their relatively low-cost intrinsic activities, high abundance, and diversity in terms of structure and morphology. Herein, a facile sugar-blowing technique and low-temperature phosphorization are reported to generate 3D self-supported metal involved carbon nanostructures, which are termed as Co2 P@Co/nitrogen-doped carbon (Co2 P@Co/N-C). By capitalizing on the 3D porous nanostructures with high surface area, homogeneously dispersed active sites, the intimate interaction between active sites, and 3D N-doped carbon, the resultant Co2 P@Co/N-C exhibits satisfying OER performance superior to CoO@Co/N-C, delivering 10 mA cm-2 at overpotential of 0.32 V. It is worth noting that in contrast to the substantial current density loss of RuO2 , Co2 P@Co/N-C shows much enhanced catalytic activity during the stability test and a 1.8-fold increase in current density is observed after stability test. Furthermore, the obtained Co2 P@Co/N-C can also be served as an excellent nonprecious metal catalyst for methanol and glucose electrooxidation in alkaline media, further extending their potential applications.

11.
Angew Chem Int Ed Engl ; 56(45): 13944-13960, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28544221

RESUMEN

Recent years have witnessed a dramatic increase in the production of sustainable and renewable energy. However, the electrochemical performances of the various systems are limited, and there is an intensive search for highly efficient electrocatalysts by more rational control over the size, shape, composition, and structure. Of particular interest are the studies on single-atom catalysts (SACs), which have sparked new interests in electrocatalysis because of their high catalytic activity, stability, selectivity, and 100 % atom utilization. In this Review, we introduce innovative syntheses and characterization techniques for SACs, with a focus on their electrochemical applications in the oxygen reduction/evolution reaction, hydrogen evolution reaction, and hydrocarbon conversion reactions for fuel cells (electrooxidation of methanol, ethanol, and formic acid). The electrocatalytic performance is further considered at an atomic level and the underlying mechanisms are discussed. The ultimate goal is the tailoring of single atoms for electrochemical applications.

12.
Langmuir ; 30(9): 2498-504, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24528373

RESUMEN

Monodisperse, quasi-spherical silver nanoparticles (Ag NPs) with controlled sizes have been produced directly in water via adding the aqueous solutions of the mixtures of AgNO3 and sodium citrate to boiling aqueous solutions of ascorbic acid (AA). Different compounds, including NaCl, NaBr, KI, Na2SO4, Na2CO3, Na2S, and Na3PO4, are added to the AgNO3/citrate mixture solutions to form new silver compounds with fairly low solubility in water, which are used as precursors instead of soluble Ag(+) ions to synthesize Ag NPs via AA/citrate reduction. This enables us not only to produce monodisperse, quasi-spherical Ag NPs but also to tune the sizes of the resulting NPs from 16 to 30 nm according to the potential of new silver precursors as well as the concentrations of anions.


Asunto(s)
Nanopartículas del Metal/química , Plata/química , Tamaño de la Partícula , Propiedades de Superficie
13.
J Nanosci Nanotechnol ; 14(4): 3087-94, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24734739

RESUMEN

We report the synthesis of polyaniline-coated-carbon nanotubes (PANI-c-CNTs) composites by using water-soluble CNTs with phenyl sulfonate groups as templates. A series of characterizations including transmission electron microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR) and UV-vis spectroscopy were conducted to investigate the formation of PANI coating on the surfaces of the CNTs. The thickness of PANI coating in the PANI-c-CNTs composites was controlled by adjusting concentrations of aniline and CNTs. The conductivities of PANI-c-CNTs composites were measured by using conductive atomic force microscopy (c-AFM). It was found that the conductivities of PANI-c-CNTs composites were remarkably affected after doping and dedoping process of PANI coating by different pH solution. Therefore, our preliminary result indicates that as-prepared PANI-c-CNTs composites may be used as gas sensor such as HCl and NH3 vapor.

14.
Biosens Bioelectron ; 208: 114190, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35366429

RESUMEN

Increased use of pesticides in agriculture requires new advanced techniques to monitor both environmental levels and human exposure of pesticides to avoid potential adverse health outcomes in sensitive populations. Atrazine is widely used to control broadleaf weeds, and here we developed a new sensor capable of detecting diaminochlorotriazine (DACT), the major metabolite and biomarker of atrazine exposure. We established an Au@PtPd nanoparticles labeled lateral flow immunoassay (LFIA) for immunochromatographic based rapid detection of urinary DACT. The detection was based on competitive immunoassay between the analyte and the BSA-conjugated antigen. As evaluated, the coupled mesoporous core-shell Au@PtPd nanoparticles, with superior peroxidase-like activity, as the signal indicator offers a rapid direct chromatographic readout inversely correlated with the concentration of analytes, providing a detection limit of 0.7 ng/mL for DACT. Moreover, the detection limits were boosted to as low as 11 pg/mL with the detectable range from 10 pg/ml to 10 ng/mL, through a one-step catalytic chromogenic reaction. A rapid readout device was developed by 3D printing to provide a stable real-time quantification of the color intensity capable of assessing both chromatographic and absorbance results. This Au@PtPd nanoparticle-based immunosensing platform, as well as the 3D printed readout device, provide a promising tool for on-site and ultrasensitive detection of pesticide biomarkers.


Asunto(s)
Atrazina , Técnicas Biosensibles , Nanopartículas del Metal , Plaguicidas , Atrazina/análogos & derivados , Atrazina/análisis , Biomarcadores , Oro/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química , Plaguicidas/análisis , Impresión Tridimensional , Teléfono Inteligente
15.
ACS Nano ; 16(9): 15165-15174, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36094168

RESUMEN

Fe-N-C single-atomic metal site catalysts (SACs) have garnered tremendous interest in the oxygen reduction reaction (ORR) to substitute Pt-based catalysts in proton exchange membrane fuel cells. Nowadays, efforts have been devoted to modulating the electronic structure of metal single-atomic sites for enhancing the catalytic activities of Fe-N-C SACs, like doping heteroatoms to modulate the electronic structure of the Fe-Nx active center. However, most strategies use uncontrolled long-range interactions with heteroatoms on the Fe-Nx substrate, and thus the effect may not precisely control near-range coordinated interactions. Herein, the chlorine (Cl) is used to adjust the Fe-Nx active center via a near-range coordinated interaction. The synthesized FeN4Cl SAC likely contains the FeN4Cl active sites in the carbon matrix. The additional Fe-Cl coordination improves the instrinsic ORR activity compared with normal FeNx SAC, evidenced by density functional theory calculations, the measured ORR half-wave potential (E1/2, 0.818 V), and excellent membrane electrode assembly performance.

16.
ACS Appl Bio Mater ; 3(9): 5922-5929, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021820

RESUMEN

Noble metal-based nanomaterials offer great potential as cargoes for multifunctional cancer treatment. In this research, Au eyeball-like nanoparticles (NPs) with open-mouthed Pd shells were synthesized and their surface was functionalized with cell-targeting ligand folic acid (FA) and photodynamic agent Chlorin e6 (Ce6). Due to the broad near-infrared (NIR) absorption band of eyeball-like bimetallic Au and Pd, the photothermal therapy effects of this nanomaterial were studied in MCF-7 cancer cells. The anchored Ce6 not only addressed the hypoxia issue of tumor cells but also exhibited remarkable photodynamic efficacy upon irradiation. Results showed that the obtained Au@Pd-PEG-FA-Ce6 (APPFC) NPs were selectively accumulated at the tumor site and induced cell apoptosis effectively due to the target specificity and synergistic phototherapy effect. The high specificity, desirable biosafety, fast delivery, and drug functionalization demonstrated eyeball-like Au@Pd NPs are promising candidate for multifunctional therapy of breast cancer.

17.
Biosens Bioelectron ; 142: 111498, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31319328

RESUMEN

Excessive use of herbicide and insecticide causes bioaccumulation in the environment and increases potential toxicity for people and animals. Portable systems for rapid assays of herbicide and insecticide residues have attracted prominent interests. Here, we developed a two-dimensional (2D) Pt-Ni(OH)2 nanosheets (NSs) amplified two-way lateral flow immunoassay (LFI) with a smartphone-based readout for simultaneous detection of acetochlor and fenpropathrin. The 2D Pt-Ni(OH)2 NSs were synthesized and used as the enhanced signal label in the immunoassay due to their high peroxidase-like activity and low migration speed. The two-way LFI was designed to eliminate potential cross-reaction between two targets. Portable detection system was developed based on a smartphone-based readout, which scans the LFI and provides the accurate testing result. The universal use of smartphones makes the developed platform suitable for cheap and on-site applications. Using the integrated platform, detection of acetochlor and fenpropathrin simultaneously was successfully achieved with the detection limits of 0.63 ng/mL and 0.24 ng/mL, respectively. To confirm the performance of the on-site application, we detected 10 non-spiked samples and 3 spiked samples. The obtained detection results were consistent with the data from gas chromatography analysis. The estimated recoveries ranged from 97.12% to 111.46%, indicating the practical reliability of our developed assay. The developed smartphone-based platform exhibits enhanced sensitivity, which provides a promising technique for on-site, multiplex, highly sensitive detection of pesticides.


Asunto(s)
Técnicas Biosensibles/instrumentación , Hidróxidos/química , Nanoestructuras/química , Níquel/química , Plaguicidas/análisis , Platino (Metal)/química , Anticuerpos Inmovilizados/química , Diseño de Equipo , Análisis de los Alimentos/instrumentación , Contaminación de Alimentos/análisis , Inmunoensayo/instrumentación , Límite de Detección , Aplicaciones Móviles , Nanoestructuras/ultraestructura , Tiras Reactivas , Teléfono Inteligente/instrumentación , Contaminantes Químicos del Agua/análisis
18.
ACS Appl Mater Interfaces ; 11(6): 5911-5918, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30652871

RESUMEN

The conversion reaction-based lithium-sulfur battery features an attractive energy density of 2600 W h/kg. Nevertheless, the unsatisfied performance in terms of poor discharge capacity and cycling stability still hinders its practical applications. Recently, porous carbon materials have been widely reported as promising sulfur reservoirs to promote the sluggish reaction kinetics of sulfur conversion, tolerate volume expansion of sulfur, and suppress polysulfide shuttling. However, porous carbon with a simply designed nanostructure is hard to satisfy all of these aspects simultaneously. Herein, we have applied a dual-template strategy that assembles carbon pores into carbon sheets to prepare three-dimensional (3D) nitrogen-doped porous carbon nanosheets (N-PCSs) as the multifunctional sulfur host for the Li-S battery. By arranging carbon pores within an interconnected 3D architecture, the porous carbon sheets enable rapid electron/ion transfer. Moreover, the micro/mesopores and nitrogen dopant in N-PCS provide both physical and chemical restrictions to polysulfide species. With these advances, the N-PCS/S cathode delivers a large initial discharge capacity of 1360 mA h/g at 0.1 C. When performed at 0.5 C for 1000 cycles, the cathode can still remain ∼50% of its capacity with a low decay rate of 0.05% per cycle, showing the important role of the 3D carbon material in the Li-S battery.

19.
ACS Appl Mater Interfaces ; 11(43): 39820-39826, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31560188

RESUMEN

Recently, electrocatalysts based on anchored dispersive/isolated single metal atoms on conductive carbon supports have demonstrated great promise to substitute costly Pt for the oxygen reduction reaction (ORR) in the field of fuel cells or metal-air batteries. However, developments of cost-efficient single-atom Fe catalysts with high activities are still facing various hardships. Here, we developed a facile way to synthesize isolated iron atoms anchored on the carbon nanotube (CNT) involving a one-pot pyrrole polymerization on a self-degraded organic template and a subsequent pyrolysis. The as-obtained electrocatalyst possessed unique characteristics of abundant nanopores in the wall of conductive CNTs to host the abundant atomic Fe-Nx active sites, showing ultrahigh ORR activity (half-wave potential: 0.93 V, kinetic current density: 59.8 mA/cm2 at 0.8 V), better than that of commercial Pt/C (half-wave potential: 0.91 V; kinetic current density: 38.0 mA/cm2 at 0.8 V) in an alkaline electrolyte. Furthermore, good ORR activity has been proven in acidic solution with a half-wave-potential of 0.73 V.

20.
Biosens Bioelectron ; 142: 111495, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31310943

RESUMEN

Due to robustness, easy large-scale preparation and low cost, nanomaterials with enzyme-like characteristics (defined as 'nanozymes') are attracting increasing interest for various applications. However, most of currently developed nanozymes show much lower activity in comparison with natural enzymes, and the deficiency greatly hinders their use in sensing and biomedicine. Single-atom catalysts (SACs) offer the unique feature of maximum atomic utilization, providing a potential pathway to improve the catalytic activity of nanozymes. Herein, we propose a Fe-N-C single-atom nanozyme (SAN) that exhibits unprecedented peroxidase-mimicking activity. The SAN consists of atomically dispersed Fe─Nx moieties hosted by metal-organic frameworks (MOF) derived porous carbon. Thanks to the 100% single-atom active Fe dispersion and the large surface area of the porous support, the Fe-N-C SAN provided a specific activity of 57.76 U mg-1, which was almost at the same level as natural horseradish peroxidase (HRP). Attractively, the SAN presented much better storage stability and robustness against harsh environments. As a proof-of-concept application, highly sensitive biosensing of butyrylcholinesterase (BChE) activity using the Fe-N-C SAN as a substitute for natural HRP was further verified.


Asunto(s)
Materiales Biomiméticos/química , Técnicas Biosensibles/métodos , Butirilcolinesterasa/análisis , Carbono/química , Estructuras Metalorgánicas/química , Peroxidasa/química , Animales , Catálisis , Caballos , Hierro/química , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA