Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 157(7): 1552-64, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949968

RESUMEN

The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell-type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in the cornu ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Animales , Embrión de Mamíferos/citología , Técnicas Genéticas , Interneuronas , Ratones , Neuronas/fisiología , Coloración y Etiquetado/métodos , Sinapsis
2.
Cell ; 159(4): 775-88, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417155

RESUMEN

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Asunto(s)
Neocórtex/citología , Neurogénesis , Animales , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo , Factores de Transcripción Otx/metabolismo , Coloración y Etiquetado/métodos , Células Madre/metabolismo
3.
Nature ; 612(7940): 503-511, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477535

RESUMEN

The neocortex consists of a vast number of diverse neurons that form distinct layers and intricate circuits at the single-cell resolution to support complex brain functions1. Diverse cell-surface molecules are thought to be key for defining neuronal identity, and they mediate interneuronal interactions for structural and functional organization2-6. However, the precise mechanisms that control the fine neuronal organization of the neocortex remain largely unclear. Here, by integrating in-depth single-cell RNA-sequencing analysis, progenitor lineage labelling and mosaic functional analysis, we report that the diverse yet patterned expression of clustered protocadherins (cPCDHs)-the largest subgroup of the cadherin superfamily of cell-adhesion molecules7-regulates the precise spatial arrangement and synaptic connectivity of excitatory neurons in the mouse neocortex. The expression of cPcdh genes in individual neocortical excitatory neurons is diverse yet exhibits distinct composition patterns linked to their developmental origin and spatial positioning. A reduction in functional cPCDH expression causes a lateral clustering of clonally related excitatory neurons originating from the same neural progenitor and a significant increase in synaptic connectivity. By contrast, overexpression of a single cPCDH isoform leads to a lateral dispersion of clonally related excitatory neurons and a considerable decrease in synaptic connectivity. These results suggest that patterned cPCDH expression biases fine spatial and functional organization of individual neocortical excitatory neurons in the mammalian brain.


Asunto(s)
Regulación de la Expresión Génica , Neocórtex , Protocadherinas , Animales , Ratones , Interneuronas/metabolismo , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/metabolismo , Protocadherinas/genética , Protocadherinas/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
4.
Nature ; 580(7801): 106-112, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238932

RESUMEN

Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex1-4. In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex5-8. However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.


Asunto(s)
Centrosoma/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/embriología , Células Ependimogliales/citología , Células-Madre Neurales/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Proliferación Celular , Centriolos/metabolismo , Corteza Cerebral/patología , Femenino , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patología , Neurogénesis , Proteínas Señalizadoras YAP
5.
Genes Dev ; 32(11-12): 763-780, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899142

RESUMEN

Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy.


Asunto(s)
Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Corteza Cerebral/fisiopatología , Convulsiones/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Corteza Cerebral/fisiología , Células Ependimogliales/fisiología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Convulsiones/fisiopatología , Transducción de Señal/genética , Células Madre/fisiología , Transactivadores , Proteínas Señalizadoras YAP
6.
Nature ; 567(7746): 113-117, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787442

RESUMEN

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Asunto(s)
Centrosoma/metabolismo , Proteínas de Unión al ADN/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/embriología , Microtúbulos/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Uniones Intercelulares/metabolismo , Interfase , Ventrículos Laterales/anatomía & histología , Glándulas Mamarias Animales/citología , Ratones , Tamaño de los Órganos , Organoides/citología
7.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35165149

RESUMEN

The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene-neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene-neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.


Asunto(s)
Encéfalo/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/metabolismo , Simulación por Computador , Ratones , Modelos Biológicos
8.
J Cell Biochem ; 125(4): e30535, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38348687

RESUMEN

Strong evidence has indicated that upregulation of chemokine (CC motif) ligand-2 (CCL2) expression and the presence of an inflammatory tumor microenvironment significantly contribute to the migratory and invasive properties of oral squamous cell carcinoma, specifically oral tongue squamous cell carcinoma (OTSCC). However, the precise epigenetic mechanism responsible for enhanced CCL2 expression in response to the inflammatory mediator tumor necrosis factor alpha (TNF-α) in OTSCC remains inadequately elucidated. We have demonstrated that the production of CCL2 can be induced by TNF-α, and this induction is mediated by the chromatin remodel protein BRG1. Through the use of a chromatin immunoprecipitation (ChIP) assay, we have found that BRG1 was involved in the recruitment of acetylated histones H3 and H4 at the CCL2 promoter, thereby activating TNF-α-induced CCL2 transcription. Furthermore, we have observed that recruitment of NF-κB p65 to the CCL2 promoter was increased following BRG1 overexpression and decreased after BRG1 knockdown in OTSCC cells. Our Re-ChIP assay has shown that BRG1 knockdown completely inhibits the recruitment of both acetylated histone H3 or H4 and NF-κB to the CCL2 promoter. In summary, the findings of our study demonstrate that BRG1 plays a significant role in mediating the production of CCL2 in OTSCC cells in response to TNF-α stimulation. This process involves the cooperative action of acetylated histone and NF-κB recruitment to the CCL2 promoter site. Our data suggest that BRG1 serves as a critical epigenetic mediator in the regulation of TNF-α-induced CCL2 transcription in OTSCC cells.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Lengua , Factor de Necrosis Tumoral alfa , Humanos , Carcinoma de Células Escamosas/genética , Quimiocina CCL2/metabolismo , Epigénesis Genética , Histonas/metabolismo , Neoplasias de la Boca , FN-kappa B/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Lengua/genética , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/metabolismo
9.
Anal Chem ; 96(6): 2286-2291, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38289025

RESUMEN

The link between inflammation and the evolution of cancer is well established. Visualizing and tracking both tumor proliferation and the associated inflammatory response within a living organism are vital for dissecting the nexus between these two processes and for crafting precise treatment modalities. We report the creation and synthesis of an advanced NIR chemiluminescence probe that stands out for its exceptional selectivity, extraordinary sensitivity at nanomolar concentrations, swift detection capabilities, and broad application prospects. Crucially, this probe has been successfully utilized to image endogenous ONOO- across different inflammation models, including abdominal inflammation triggered by LPS, subcutaneous inflammatory conditions, and tumors grafted onto mice. These findings highlight the significant promise of chemiluminescence imaging in enhancing our grasp of the intricate interplay between cancer and inflammation and in steering the development of potent, targeted therapeutic strategies.


Asunto(s)
Inflamación , Neoplasias , Animales , Ratones , Inflamación/diagnóstico por imagen , Luminiscencia , Neoplasias/diagnóstico por imagen , Colorantes Fluorescentes , Ácido Peroxinitroso
10.
Angew Chem Int Ed Engl ; 63(7): e202319139, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38129314

RESUMEN

Oxygen activation is a critical step in heterogeneous oxidative processes, particularly in catalytic, electrolytic, and pharmaceutical applications. Among the various catalysts available for photocatalytic O2 activation, homogeneous aryl ketones are at the forefront. To avoid the degradation and deactivation of aryl ketones, 9-fluorenone-based porous organic polymers were designed and regulated by doping them with co-monomers. The obtained heterogeneous photocatalyst showed good performance in O2 activation, and its performance was better than that of homogeneous 9-fluorenone. The obtained heterogeneous photocatalyst showed good reusability. We believe that the presented method and findings represent an important step toward designing catalysts tailored for specific tasks.

11.
Development ; 147(5)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32041791

RESUMEN

Orderly division of radial glial progenitors (RGPs) in the developing mammalian cerebral cortex generates deep and superficial layer neurons progressively. However, the mechanisms that control RGP behavior and precise neuronal output remain elusive. Here, we show that the oxidative stress level progressively increases in the developing mouse cortex and regulates RGP behavior and neurogenesis. As development proceeds, numerous gene pathways linked to reactive oxygen species (ROS) and oxidative stress exhibit drastic changes in RGPs. Selective removal of PRDM16, a transcriptional regulator highly expressed in RGPs, elevates ROS level and induces expression of oxidative stress-responsive genes. Coinciding with an enhanced level of oxidative stress, RGP behavior was altered, leading to abnormal deep and superficial layer neuron generation. Simultaneous expression of mitochondrially targeted catalase to reduce cellular ROS levels significantly suppresses cortical defects caused by PRDM16 removal. Together, these findings suggest that oxidative stress actively regulates RGP behavior to ensure proper neurogenesis in the mammalian cortex.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Células-Madre Neurales/citología , Neurogénesis/fisiología , Estrés Oxidativo/fisiología , Factores de Transcripción/genética , Animales , Células Cultivadas , Corteza Cerebral/citología , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
FASEB J ; 36(1): e22075, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919285

RESUMEN

Long non-coding RNAs (lncRNAs) regulate neurological damage in cerebral ischemia-reperfusion injury (CIRI). This study aimed to investigate the biological roles of lncRNA CEBPA-AS1 in CIRI. Middle cerebral artery occlusion and ischemia-reperfusion injury (MCAO/IR) rat model and oxygen-glucose deprivation and reoxygenation (OGD/R) cell lines were generated; the expression of CEBPA-AS1 was evaluated by qRT-PCR. The effects of CEBPA-AS1 on cell apoptosis and nerve damage were examined. The downstream microRNA (miRNA) and mRNA of CEBPA-AS1 were predicted and verified. We found that overexpression of CEBPA-AS1 could attenuate MCAO/IR-induced nerve damage and neuronal apoptosis in the rat model. Knockdown of CEBPA-AS1 aggravated cell apoptosis and enhanced the production of LDH and MDA in the OGD/R cells. Upon examining the molecular mechanisms, we found that CEBPA-AS1 stimulated APPL1 expression by combining with miR-340-5p, thereby regulating the APPL1/LKB1/AMPK pathway. In the rescue experiments, CEBPA-AS1 overexpression was found to attenuate OGD/R-induced cell apoptosis and MCAO/IR induced nerve damage, while miR-340-5p reversed these effects of CEBPA-AS1. In conclusion, CEBPA-AS1 could decrease CIRI by sponging miR-340-5, regulating the APPL1/LKB1/AMPK pathway.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/biosíntesis , Proteínas Quinasas Activadas por AMP/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Trastornos Cerebrovasculares/metabolismo , MicroARNs/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , ARN Largo no Codificante/biosíntesis , Daño por Reperfusión/metabolismo , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Proteínas Quinasas Activadas por AMP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Trastornos Cerebrovasculares/genética , Trastornos Cerebrovasculares/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/genética , Daño por Reperfusión/patología
13.
Neurosurg Rev ; 46(1): 64, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877325

RESUMEN

To explore the utility of transcranial Doppler (TCD) findings when assessing bypass patency in patients with Moyamoya disease (MMD). Computed tomography angiography (CTA) and TCD sonography (TCDS) were performed before and after surgery to evaluate bypass patency. The peak systolic flow velocity (PSV) of the superficial temporal artery (STA) and the pulsatility index (PI) were compared between the groups that achieved patency and not, and receiver operating characteristic (ROC) curve analyses were used to define the TCDS criteria revealing patency. This study included 35 hemispheres (15 women; mean age 47 years) with Moyamoya disease who underwent STA-middle carotid artery bypass in our institution between January 2022 and October 2022. The PSV first increased on postoperative days 4-5 and then decreased on postoperative days 6-7 and 7-8. Patients with transient neurological diseases (TNDs), compared to those without, evidenced a significantly lower PSV value (P < 0.05). Compared with the non-patency group, the PSV was higher (P < 0.001) in the patency group. The cutoff values reflecting patency with good sensitivity and specificity were PSV > 49.00; PSV ratio (postoperative/preoperative) > 1.218; PSV ratio (operation side/contralateral side) > 1.082; and PSV ratio (adjusted) > 1.202. In the patency group, the PSV and PI significantly increased (P < 0.001) and decreased (P < 0.001) respectively. Bypass patency can be noninvasively and accurately evaluated via TCDS, affording an objective basis for assessment of the effect of revascularization surgery on patients with MMD.


Asunto(s)
Angiografía por Tomografía Computarizada , Enfermedad de Moyamoya , Humanos , Femenino , Persona de Mediana Edad , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía , Ultrasonografía Doppler Transcraneal , Angiografía
14.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835334

RESUMEN

The phenotypic and genetic links between body fat phenotypes and primary open-angle glaucoma (POAG) are unclear. We conducted a meta-analysis of relevant longitudinal epidemiological studies to evaluate the phenotypic link. To identify genetic links, we performed genetic correlation analysis and pleiotropy analysis of genome-wide association study summary statistics datasets of POAG, intraocular pressure (IOP), vertical cup-to-disc ratio, obesity, body mass index (BMI), and waist-to-hip ratio. In the meta-analysis, we first established that obese and underweight populations have a significantly higher risk of POAG using longitudinal data. We also discovered positive genetic correlations between POAG and BMI and obesity phenotypes. Finally, we identified over 20 genomic loci jointly associated with POAG/IOP and BMI. Among them, the genes loci CADM2, RP3-335N17.2, RP11-793K1.1, RPS17P5, and CASC20 showed the lowest false discovery rate. These findings support the connection between body fat phenotypes and POAG. The newly identified genomic loci and genes render further functional investigation.


Asunto(s)
Tejido Adiposo , Distribución de la Grasa Corporal , Glaucoma de Ángulo Abierto , Humanos , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Presión Intraocular/genética , Obesidad/genética , Fenotipo
15.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838824

RESUMEN

(E)-7-Phenyl-2-hepten-4,6-diyn-1-ol (1) and (Z)-7-Phenyl-2-hepten-4,6-diyn-1-ol (2) are isomeric natural polyacetylenes isolated from the Chinese medicinal plant Bidens pilosa L. This study first revealed the excellent anti-metastasis potential of these two polyacetylenes on human gastric cancer HGC-27 cells and the distinctive molecular mechanisms underlying their activities. Polyacetylenes 1 and 2 significantly inhibited the migration, invasion, and adhesion of HGC-27 cells at their non-toxic concentrations in a dose-dependent manner. The results of a further mechanism investigation showed that polyacetylene 1 inhibited the expressions of Vimentin, Snail, ß-catenin, GSK3ß, MST1, YAP, YAP/TAZ, and their phosphorylation, and upregulated the expression of E-cadherin and p-LATS1. In addition, the expressions of various downstream metastasis-related proteins, such as MMP2/7/9/14, c-Myc, ICAM-1, VCAM-1, MAPK, p-MAPK, Sox2, Cox2, and Cyr61, were also suppressed in a dose-dependent manner. These findings suggested that polyacetylene 1 exhibited its anti-metastasis activities on HGC-27 cells through the reversal of the EMT process and the suppression of the Wnt/ß-catenin and Hippo/YAP signaling pathways.


Asunto(s)
Bidens , Neoplasias Gástricas , Humanos , beta Catenina/metabolismo , Polímero Poliacetilénico , Vía de Señalización Hippo , Poliinos , Vía de Señalización Wnt
16.
Zhonghua Nan Ke Xue ; 29(8): 751-754, 2023 Aug.
Artículo en Zh | MEDLINE | ID: mdl-38619525

RESUMEN

Centipede is an important traditional Chinese medicine with a long history of clinical application and a wide range of effects, and its use in the field of andrology is also expanding.In this study, the drug experience and clinical research progress of centipede in erectile dysfunction, chronic prostatitis, prostate cancer, varicocele, chronic epididymitis, epididymal nodules, functional non-ejaculation, scrotal eczema and other diseases were reviewed.


Asunto(s)
Andrología , Epididimitis , Disfunción Eréctil , Masculino , Animales , Humanos , Quilópodos , Epidídimo
17.
J Biol Chem ; 296: 100730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33933448

RESUMEN

Proper dendrite morphogenesis and synapse formation are essential for neuronal development and function. Dasm1, a member of the immunoglobulin superfamily, is known to promote dendrite outgrowth and excitatory synapse maturation in vitro. However, the in vivo function of Dasm1 in neuronal development and the underlying mechanisms are not well understood. To learn more, Dasm1 knockout mice were constructed and employed to confirm that Dasm1 regulates dendrite arborization and spine formation in vivo. We performed a yeast two-hybrid screen using Dasm1, revealing MRCKß as a putative partner; additional lines of evidence confirmed this interaction and identified cytoplasmic proline-rich region (823-947 aa) of Dasm1 and MRCKß self-activated kinase domain (CC1, 410-744 aa) as necessary and sufficient for binding. Using co-immunoprecipitation assay, autophosphorylation assay, and BS3 cross-linking assay, we show that Dasm1 binding triggers a change in MRCKß's conformation and subsequent dimerization, resulting in autophosphorylation and activation. Activated MRCKß in turn phosphorylates a class 2 regulatory myosin light chain, which leads to enhanced actin rearrangement, causing the dendrite outgrowth and spine formation observed before. Removal of Dasm1 in mice leads to behavioral abnormalities. Together, these results reveal a crucial molecular pathway mediating cell surface and intracellular signaling communication to regulate actin dynamics and neuronal development in the mammalian brain.


Asunto(s)
Actinas/metabolismo , Dendritas/metabolismo , Inmunoglobulinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Espinas Dendríticas/metabolismo , Inmunoglobulinas/química , Ratones , Proteínas del Tejido Nervioso/química , Unión Proteica , Dominios Proteicos
18.
Langmuir ; 38(30): 9310-9320, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35861595

RESUMEN

It is of significant implication to fabricate high-performance, durable and low-cost catalysts toward to oxygen reduction reaction (ORR) to drive commercial application of fuel cells. In our work, we synthesize the Fe/N-CNT catalyst via one-pot grinding combined with calcination using a mixture of carbamide, CNTs and iron salts as precursors, the as-synthesized catalysts show the structure that Fe nanoparticles are encapsulated in the tube of intertwined CNTs with abundant active sites. The catalyst is synthesized at 800 °C (Fe/N-CNT-800-20) obtain high graphitization degree and high N doped content, especially the high content and proportion of Fe-N and pyridinic-N, exhibiting outstanding ORR activity. Moreover, too high calcination temperature (850 °C) and high Fe content (25%) lead to the agglomeration of Fe during the calcination, which blocked some catalytic sites, leading to poor ORR activity. This facile synergy route will provide new thoughts for the fabrication and optimization of catalysts.

19.
Artículo en Inglés | MEDLINE | ID: mdl-35511243

RESUMEN

A Gram-stain-positive, aerobic, non-pigmented and non-motile actinobacterium, designated strain SCSIO 67246T, was isolated from a stony coral sample collected from the Sanya sea area, Hainan province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SCSIO 67246T shared the highest similarities with Nocardioides rotundus MCCC 1A10561T (96.5 %) and Nocardioides sonneratiae KCTC 39565T (96.1%). The novel strain grew at 15-37 °C, at pH 5.0-10.0 and in the presence of 0-10 % (w/v) NaCl. The genome length of strain SCSIO 67246T was 3.52 Mbp with a DNA G+C content of 72.0 mol% and 3397 protein-coding genes. The novel strain showed an average nucleotide identity value of 76.5 % and a digital DNA-DNA hybridization value of 20.1 % with N. rotundus MCCC 1A10561T. Strain SCSIO 67246T contained MK-8(H4) as the major menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and five phospholipids. The major cellular fatty acids were iso-C16 : 0, C17 : 1 ω8c and summed feature 9 (iso-C17 : 1 ω9c/10-methyl C16 : 0). ll-2,6-Diaminopimelic acid was the diagnostic diamino acid. The whole-cell sugars were galactose, glucose and ribose. Based on this polyphasic taxonomic study, strain SCSIO 67246T represents a novel species of the genus Nocardioides, for which the name Nocardioides coralli sp. nov. is proposed. The type strain is SCSIO 67246T (=MCCC 1K06251T=KCTC 49719T).


Asunto(s)
Actinobacteria , Actinomycetales , Antozoos , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Nocardioides , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
20.
Anal Bioanal Chem ; 414(22): 6557-6570, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831534

RESUMEN

Molecularly imprinted polymers (MIPs) can exhibit antibody-level affinity for target molecules. However, the nonspecific adsorption of non-imprinted regions for non-target molecules limits the application range of MIPs. Herein, we fabricated PEGylated boronate-affinity-oriented ellagic acid-imprinting magnetic nanoparticles (PBEMN), which first integrated boronate-affinity-oriented surface imprinting and sequential PEGylation for small molecule-imprinted MIPs. The resultant PBEMN possess higher adsorption capacity and faster adsorption rate for template ellagic acid (EA) molecules than the non-PEGylated control. To prove the excellent performance, the PBEMN were linked with hydrophilic boronic acid-modified/fluorescein isothiocyanate-loaded graphene oxide (BFGO), because BFGO could selectively label cis-diol-containing substances by boronate-affinity and output ultrasensitive fluorescent signals. Based on a dual boronate-affinity synergy, the PBEMN first selectively captured EA molecules by boronate-affinity-oriented molecular imprinted recognition, and then the EA molecules were further labeled with BFGO through boronate-affinity. The PBEMN linked BFGO (PBPF) strategy provided ultrahigh sensitivity for EA molecules with a limit of detection of 39.1 fg mL-1, resulting from the low nonspecific adsorption of PBEMN and the ultrasensitive fluorescence signal of BFGO. Lastly, the PBPF strategy was successfully employed in the determination of EA concentration in a spiked beverage sample with recovery and relative standard deviation in the range of 96.5 to 104.2% and 3.8 to 5.1%, respectively. This work demonstrates that the integration of boronate-affinity-oriented surface imprinting and sequential PEGylation may be a universal tool for improving the performance of MIPs.


Asunto(s)
Nanopartículas de Magnetita , Impresión Molecular , Adsorción , Bebidas , Ácidos Borónicos , Ácido Elágico , Impresión Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA