Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 153(6): 1340-53, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746845

RESUMEN

Yeast telomeres comprise irregular TG1₋3 DNA repeats bound by the general transcription factor Rap1. Rif1 and Rif2, along with Rap1, form the telosome, a protective cap that inhibits telomerase, counteracts SIR-mediated transcriptional silencing, and prevents inadvertent recognition of telomeres as DNA double-strand breaks. We provide a molecular, biochemical, and functional dissection of the protein backbone at the core of the yeast telosome. The X-ray structures of Rif1 and Rif2 bound to the Rap1 C-terminal domain and that of the Rif1 C terminus are presented. Both Rif1 and Rif2 have separable and independent Rap1-binding epitopes, allowing Rap1 binding over large distances (42-110 Å). We identify tetramerization (Rif1) and polymerization (Rif2) modules that, in conjunction with the long-range binding, give rise to a higher-order architecture that interlinks Rap1 units. This molecular Velcro relies on Rif1 and Rif2 to recruit and stabilize Rap1 on telomeric arrays and is required for telomere homeostasis in vivo.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Alineación de Secuencia , Complejo Shelterina
2.
PLoS Pathog ; 16(8): e1008775, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32866218

RESUMEN

Small RNA viruses only have a very limited coding capacity, thus most viral proteins have evolved to fulfill multiple functions. The highly conserved matrix protein 1 (M1) of influenza A viruses is a prime example for such a multifunctional protein, as it acts as a master regulator of virus replication whose different functions have to be tightly regulated. The underlying mechanisms, however, are still incompletely understood. Increasing evidence points towards an involvement of posttranslational modifications in the spatio-temporal regulation of M1 functions. Here, we analyzed the role of M1 tyrosine phosphorylation in genuine infection by using recombinant viruses expressing M1 phosphomutants. Presence of M1 Y132A led to significantly decreased viral replication compared to wildtype and M1 Y10F. Characterization of phosphorylation dynamics by mass spectrometry revealed the presence of Y132 phosphorylation in M1 incorporated into virions that is most likely mediated by membrane-associated Janus kinases late upon infection. Molecular dynamics simulations unraveled a potential phosphorylation-induced exposure of the positively charged linker domain between helices 4 and 5, supposably acting as interaction platform during viral assembly. Consistently, M1 Y132A showed a defect in lipid raft localization due to reduced interaction with viral HA protein resulting in a diminished structural stability of viral progeny and the formation of filamentous particles. Importantly, reduced M1-RNA binding affinity resulted in an inefficient viral genome incorporation and the production of non-infectious virions that interferes with virus pathogenicity in mice. This study advances our understanding of the importance of dynamic phosphorylation as a so far underestimated level of regulation of multifunctional viral proteins and emphasizes the potential feasibility of targeting posttranslational modifications of M1 as a novel antiviral intervention.


Asunto(s)
Virus de la Influenza A/metabolismo , Mutación Missense , Proteínas de la Matriz Viral/metabolismo , Células A549 , Sustitución de Aminoácidos , Animales , Perros , Femenino , Células HEK293 , Humanos , Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Proteínas de la Matriz Viral/genética
3.
J Antimicrob Chemother ; 75(2): 400-408, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670804

RESUMEN

BACKGROUND: Diazabicyclooctanes (DBOs) are an increasingly important group of non ß-lactam ß-lactamase inhibitors, employed clinically in combinations such as ceftazidime/avibactam. The dose finding of such combinations is complicated using the traditional pharmacokinetic/pharmacodynamic (PK/PD) index approach, especially if the ß-lactamase inhibitor has an antibiotic effect of its own. OBJECTIVES: To develop a novel mechanism-based pharmacokinetic-pharmacodynamic (PKPD) model for ceftazidime/avibactam against Gram-negative pathogens, with the potential for combination dosage simulation. METHODS: Four ß-lactamase-producing Enterobacteriaceae, covering Ambler classes A, B and D, were exposed to ceftazidime and avibactam, alone and in combination, in static time-kill experiments. A PKPD model was developed and evaluated using internal and external evaluation, and combined with a population PK model and applied in dosage simulations. RESULTS: The developed PKPD model included the effects of ceftazidime alone, avibactam alone and an 'enhancer' effect of avibactam on ceftazidime in addition to the ß-lactamase inhibitory effect of avibactam. The model could describe an extensive external Pseudomonas aeruginosa data set with minor modifications to the enhancer effect, and the utility of the model for clinical dosage simulation was demonstrated by investigating the influence of the addition of avibactam. CONCLUSIONS: A novel mechanism-based PKPD model for the DBO/ß-lactam combination ceftazidime/avibactam was developed that enables future comparison of the effect of avibactam with other DBO/ß-lactam inhibitors in simulations, and may be an aid in translating PKPD results from in vitro to animals and humans.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/farmacocinética , Ceftazidima/farmacología , Ceftazidima/farmacocinética , Bacterias Gramnegativas/efectos de los fármacos , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Combinación de Medicamentos , Bacterias Gramnegativas/enzimología , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas/farmacocinética , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas
4.
Breast ; 66: 262-271, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36375387

RESUMEN

Upon its establishment for the treatment of metastatic breast cancer (mBC), continuing trastuzumab beyond disease progression was an important paradigm shift that became the recommendation by major guidelines. However, data supporting continuation of human epidermal growth factor receptor 2 (HER2) blockade with trastuzumab beyond the second-line setting are limited, resulting in a lack of approval of, or access to, this therapeutic strategy in many countries. This study aimed to provide additional data on the continued use of trastuzumab and trastuzumab-based therapies in combination with chemotherapy (CT) as third-line treatment for patients with mBC. This open-cohort, retrospective, observational study used deidentified patient-level data from an electronic health record-derived database that included patients with mBC who initiated third-line treatment with trastuzumab-based therapy combined with CT (Tras + CT; n = 288) or CT alone (CT; n = 49). Patients who received Tras + CT had a longer weighted median overall survival vs those who received CT only: 20.6 months (95% CI, 18.3-26.4 months) vs 10.1 months (95% CI, 7.8-12.3 months), respectively (hazard ratio [HR], 0.29; 95% CI, 0.16-0.53). This study provides additional support for maintaining trastuzumab-based therapies for patients with HER2+ mBC beyond second-line treatment. This treatment option should be available for all patients with mBC worldwide.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Estudios Retrospectivos , Supervivencia sin Enfermedad , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Modelos de Riesgos Proporcionales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
5.
Mol Ther Nucleic Acids ; 11: 441-454, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858079

RESUMEN

Chronic hepatitis B infection (CHB) is an area of high unmet medical need. Current standard-of-care therapies only rarely lead to a functional cure, defined as durable hepatitis B surface antigen (HBsAg) loss following treatment. The goal for next generation CHB therapies is to achieve a higher rate of functional cure with finite treatment duration. To address this urgent need, we are developing liver-targeted single-stranded oligonucleotide (SSO) therapeutics for CHB based on the locked nucleic acid (LNA) platform. These LNA-SSOs target hepatitis B virus (HBV) transcripts for RNase-H-mediated degradation. Here, we describe a HBV-specific LNA-SSO that effectively reduces intracellular viral mRNAs and viral antigens (HBsAg and HBeAg) over an extended time period in cultured human hepatoma cell lines that were infected with HBV with mean 50% effective concentration (EC50) values ranging from 1.19 to 1.66 µM. To achieve liver-specific targeting and minimize kidney exposure, this LNA-SSO was conjugated to a cluster of three N-acetylgalactosamine (GalNAc) moieties that direct specific binding to the asialoglycoprotein receptor (ASGPR) expressed specifically on the surface of hepatocytes. The GalNAc-conjugated LNA-SSO showed a strikingly higher level of potency when tested in the AAV-HBV mouse model as compared with its non-conjugated counterpart. Remarkably, higher doses of GalNAc-conjugated LNA-SSO resulted in a rapid and long-lasting reduction of HBsAg to below the detection limit for quantification, i.e., by 3 log10 (p < 0.0003). This antiviral effect depended on a close match between the sequences of the LNA-SSO and its HBV target, indicating that the antiviral effect is not due to non-specific oligonucleotide-driven immune activation. These data support the development of LNA-SSO therapeutics for the treatment of CHB infection.

6.
Nat Struct Mol Biol ; 24(7): 588-595, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28604726

RESUMEN

In yeast, Rif1 is part of the telosome, where it inhibits telomerase and checkpoint signaling at chromosome ends. In mammalian cells, Rif1 is not telomeric, but it suppresses DNA end resection at chromosomal breaks, promoting repair by nonhomologous end joining (NHEJ). Here, we describe crystal structures for the uncharacterized and conserved ∼125-kDa N-terminal domain of Rif1 from Saccharomyces cerevisiae (Rif1-NTD), revealing an α-helical fold shaped like a shepherd's crook. We identify a high-affinity DNA-binding site in the Rif1-NTD that fully encases DNA as a head-to-tail dimer. Engagement of the Rif1-NTD with telomeres proved essential for checkpoint control and telomere length regulation. Unexpectedly, Rif1-NTD also promoted NHEJ at DNA breaks in yeast, revealing a conserved role of Rif1 in DNA repair. We propose that tight associations between the Rif1-NTD and DNA gate access of processing factors to DNA ends, enabling Rif1 to mediate diverse telomere maintenance and DNA repair functions.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología
7.
Cell Rep ; 7(1): 62-9, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24685139

RESUMEN

The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two proteins implicated in pre-RC activation, Mcm4 and Sld3, display increased Dbf4-dependent kinase (DDK) phosphorylation in rif1 mutants. Rif1 also interacts with Dbf4 in yeast two-hybrid assays, further implicating this protein in direct modulation of pre-RC activation through the DDK. Finally, we demonstrate Rif1 RVxF/SILK motif-dependent recruitment of Glc7 to telomeres and earlier replication of these regions in cells where the motifs are mutated. Our data thus link Rif1 to negative regulation of replication origin firing through recruitment of the Glc7 phosphatase.


Asunto(s)
Replicación del ADN/fisiología , Proteína Fosfatasa 1/metabolismo , Origen de Réplica/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA