Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Bot ; 107(5): 761-772, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32452016

RESUMEN

PREMISE: The distribution and performance of bryophyte species vary with vertical gradients, as a result of changes in environmental factors, especially light. However, the morphological and physiological drivers of bryophyte distribution along forest vertical gradients are poorly understood. METHODS: For 18 species of mosses and liverworts distributed among three vertical microhabitats (ground, tree trunk, and branch, variance in 28 morphological and photosynthetic functional traits was comparatively analyzed among the microhabitats and bryophyte life-forms in a subtropical cloud forest in Ailao Mountain, Yunnan, southwestern China. Principal component analysis (PCA) was used to summarize trait differences among bryophyte species. RESULTS: In contrast to trunk and ground dwellers, branch dwellers tended to reduce light interception (smaller leaf and cell sizes, lower chlorophyll content), protect against damage from intense irradiation (higher ratios of carotenoids to chlorophyll), raise light energy use (higher photosynthetic capacity), and cope with lower environmental moisture (pendant life-forms, thicker cell walls). The PCA showed that ecological strategies of bryophytes in response to levels of irradiation were specialized in branch dwellers, although those of ground and trunk dwellers were less distinct. CONCLUSIONS: Environmental filtering shaped the combination of functional traits and the spatial distribution of bryophytes along the vertical gradients. Bryophyte species from the upper canopy of cloud forests show narrow variation in functional traits in high-light intensity, whereas species in the lower vertical strata associated with low-light intensity used contrasting, but more diverse ecological strategies.


Asunto(s)
Briófitas , Bosques , China , Fotosíntesis , Hojas de la Planta , Árboles
2.
Photosynth Res ; 141(2): 245-257, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30729446

RESUMEN

Chlorophyll content in lichens is routinely used as an accurate indicator of lichen vigor, interspecific differences, and the effect of site-related environmental parameters. Traditional methods of chlorophyll extraction are destructive, time-consuming, expensive, and inoperable, especially when measuring large quantities of chlorophyll. However, non-destructive methods of measurement using portable chlorophyll meters are rarely used for lichens. Considering the characteristics of lichens such as rough blade surface and absence of chlorophyll b in cyanolichens, we compared the non-destructive methods with traditional methods and evaluated their applicability in studying lichen pigment content. Two instruments, SPAD-502 and CCM-300, were used to measure the pigment content of seven foliose lichen species. These pigment readings were compared with those determined using the dimethyl sulphoxide (DMSO) extraction method. Significant correlations were observed between SPAD/CCM values and pigments (chlorophyll and total carotenoids) extracted from chlorolichens, especially species with a smooth surface. The CCM-300 was more accurate in detecting the pigment content of foliose chlorolichens. However, both instruments showed certain limitations in the determination of pigment content in cyanolichens, especially gelatinous species. For example, CCM-300 often failed to give specific values for some cyanolichen samples, and both instruments showed low measurement accuracy for cyanolichens. Based on the high correlation observed between chlorophyll meter readings and pigments extracted from chlorolichens, equations obtained in this study enabled accurate prediction of pigment content in these lichens.


Asunto(s)
Líquenes/metabolismo , Pigmentos Biológicos/análisis , Carotenoides/análisis , Clorofila/análisis
3.
J Plant Res ; 128(4): 573-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25813755

RESUMEN

Fan life forms are bryophytes with shoots rising from vertical substratum that branch repeatedly in the horizontal plane to form flattened photosynthetic surfaces, which are well suited for intercepting water from moving air. However, detailed water relations, gas exchange characteristics of fan bryophytes and their adaptations to particular microhabitats remain poorly understood. In this study, we measured and analyzed microclimatic data, as well as water release curves, pressure-volume relationships and photosynthetic water and light response curves for three common fan bryophytes in an Asian subtropical montane cloud forest (SMCF). Results demonstrate high relative humidity but low light levels and temperatures in the understory, and a strong effect of fog on water availability for bryophytes in the SMCF. The facts that fan bryophytes in dry air lose most of their free water within 1 h, and a strong dependence of net photosynthesis rates on water content, imply that the transition from a hydrated, photosynthetically active state to a dry, inactive state is rapid. In addition, fan bryophytes developed relatively high cell wall elasticity and the osmoregulatory capacity to tolerate desiccation. These fan bryophytes had low light saturation and compensation point of photosynthesis, indicating shade tolerance. It is likely that fan bryophytes can flourish on tree trunks in the SMCF because of substantial annual precipitation, average relative humidity, and frequent and persistent fog, which can provide continual water sources for them to intercept. Nevertheless, the low water retention capacity and strong dependence of net photosynthesis on water content of fan bryophytes indicate a high risk of unbalanced carbon budget if the frequency and severity of drought increase in the future as predicted.


Asunto(s)
Adaptación Fisiológica/fisiología , Briófitas/fisiología , Bosques , Transpiración de Plantas/fisiología , Agua , Asia , Clima , Humedad
4.
Environ Pollut ; 327: 121570, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023888

RESUMEN

The response of leaf functional traits can provide vital insight into the adaptive strategies of plants under global change. However, empirical knowledge on the acclimation of functional coordination between phenotypic plasticity and integration to increased nitrogen (N) deposition is still scarce. The variation of leaf functional traits of two dominant seedling species, Machilus gamblei and Neolitsea polycarpa, across four N deposition rates (0, 3, 6, and 12 kg N ha-1yr-1), along with the relationship between leaf phenotypic plasticity and integration were investigated in a subtropical montane forest. We found that enhanced N deposition promoted the development of seedling traits toward the direction of resource acquisition, including improved leaf N content, specific leaf area and photosynthetic performance. Appropriate N deposition (≤6 kg N ha-1 yr-1) might induce the optimization of leaf functional traits to promote the capability and efficiency of nutrient use and photosynthesis in seedlings. However, excessive N deposition (12 kg N ha-1 yr-1) would result in detrimental effects on leaf morphological and physiological traits, thus inhibiting the efficiency in resource acquisition. A positive relationship occurred between leaf phenotypic plasticity and integration in both seedling species, implied that higher plasticity of leaf functional traits likely led to better integration with other traits under N deposition. Overall, our study emphasized that leaf functional traits could rapidly respond to changes in N resource, while the coordination between leaf phenotypic plasticity and integration can facilitate the adaptation of tree seedlings in coping with enhanced N deposition. Further studies are still needed on the role of leaf phenotypic plasticity and integration in plant fitness for predicting ecosystem functioning and forest dynamics, especially in the context of future high N deposition.


Asunto(s)
Ecosistema , Plantas , Hojas de la Planta , Adaptación Fisiológica , Aclimatación , Plantones , Fotosíntesis
5.
Mitochondrial DNA B Resour ; 7(6): 1191-1193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783037

RESUMEN

The Sand Martin (Riparia riparia) belongs to Hirundinidae. In this study, the complete mitochondrial genome of R. riparia was sequenced and characterized. The genome was 17,963 bases in length (GenBank accession no. OK537984) including 13 protein-coding genes, two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and two control regions. The overall base composition of R. riparia mitogenome was 30.5% for A, 31.8% for C, 14.5% for G, and 23.2% for T. Phylogenetic analysis revealed that R. riparia was genetically closest to the species of genus Tachycineta. R. riparia mitogenome could contribute to our understanding of the phylogeny and evolution of this species.

6.
Sci Total Environ ; 836: 155694, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35523343

RESUMEN

Source-specific risk apportionment for soil heavy metals (HMs) is crucial for pollution mitigation and risk control in coal-mining areas. The ecological and human health risks resulting from different sources were evaluated through an integrated method that combines risk assessments with positive matrix factorization (PMF) model. Thirty soil samples were collected from a typical coal-mining city in central China and analyzed for six HMs (Cu, Ni, Pb, Cd, As, and Hg). The results indicate that surface soil in the study area suffered from moderate HMs pollution, especially pollution by Cd and Hg. Four potential sources of soil HMs were identified and quantified in the study area, including natural source (27.7%), traffic emissions (33.4%), agricultural practices (16.2%), and industrial activities (22.7%). The ecological risk of the study area was at moderate level, and the leading contributions in urban and suburban areas were from industrial activities and agricultural practices, respectively. The non-carcinogenic risks for adults and children were lower than the risk threshold, while the carcinogenic risks ranged between 1E-06 and 1E-04, suggesting that carcinogenic risks and hazards to human health should not be neglected. Traffic emissions and natural sources mainly contributed to the non-carcinogenic and carcinogenic risks, due to the strong non-carcinogenicity and carcinogenicity of As and Ni. These findings highlight the ecological and health risks linked to potential sources of soil HMs contamination and provide valuable information on the reduction of corresponding risks for local environmental managers.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Adulto , Cadmio/análisis , Niño , China , Carbón Mineral/análisis , Monitoreo del Ambiente , Humanos , Mercurio/análisis , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Urbanización
7.
Ecol Evol ; 9(24): 14394-14406, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31938527

RESUMEN

Epiphytes in tree canopies make a considerable contribution to the species diversity, aboveground biomass, and nutrient pools in forest ecosystems. However, the nutrient status of epiphytes and their possible adaptations to nutrient deficiencies in the forest canopy remain unclear. Therefore, we analyzed the stoichiometry of five macroelements (C, N, P, K, and Ca) in four taxonomic groups (lichens, bryophytes, ferns, and spermatophytes) to investigate this issue in a subtropical montane moist evergreen broad-leaved forest in Southwest China. We found that the interspecific variations in element concentrations and mass ratios were generally greater than the intraspecific variations. And there were significant stoichiometric differences among functional groups. Allometric relationships between N and P across the epiphyte community indicated that P might be in greater demand than N with an increase in nutrients. Although canopy nutrients were deficient, most epiphytes could still maintain high N and P concentrations and low N:P ratios. Moreover, ferns and spermatophytes allocated more limited nutrients to leaves than to stems and roots. To alleviate frequent drought stress in the forest canopy, vascular epiphytes maintained several times higher K concentrations in their leaves than in the tissues of lichens and bryophytes. Our results suggest that epiphytes may have evolved specific nutrient characteristics and adaptations, so that they can distribute in heterogeneous canopy habitats and maintain the stability of nutrient metabolism.

8.
Sci Total Environ ; 619-620: 630-637, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29156281

RESUMEN

Nitrogen (N) fixed by epiphytic cyanolichens (i.e. lichens that contain cyanobacterial symbionts) is thought to be the most important resource of this nutrient in some natural forest ecosystems. Although a great deal of work has been carried out to evaluate the biomass of this group as well as its contribution to ecosystem N budgets, empirical studies are needed to confirm the N input responses by cyanolichens under climate change conditions (dry-hot stress) as well as to determine the factors that control this process. We simulated climate change conditions by transplanting Lobaria retigera, a common cyanolichen in the area, to lower elevations, and measured nitrogenase activity in response to warmer and drier conditions. In addition, we conducted a series of laboratory and greenhouse experiments to determine the dominant factors influencing nitrogenase activity in this species. The results of this study show that mean annual nitrogenase activity at the higher site was 1.5 and 2.4 times that at the simulated warmer and drier (middle and lower) sites, respectively. Combining laboratory experimental conclusions, we show that thallus water content is a key factor determining the nitrogenase activity of L. retigera in early transplantation while insufficient carbon storage resulting from a combination of warming and desiccation was likely responsible for reducing nitrogenase activity in later months of the transplant experiment. The results of this study imply that the negative impact of climate change (dry-hot stress) on ecosystems not only impacts the distribution and growth of species, but also nutrient circles and budgets.


Asunto(s)
Cambio Climático , Sequías , Líquenes/enzimología , Nitrogenasa/metabolismo , Biomasa , China , Ecosistema , Bosques , Calor , Fijación del Nitrógeno
9.
Environ Pollut ; 229: 932-941, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28784334

RESUMEN

Increasing trends of atmospheric nitrogen (N) deposition due to pollution and land-use changes are dramatically altering global biogeochemical cycles. Bryophytes, which are extremely vulnerable to N deposition, often play essential roles in these cycles by contributing to large nutrient pools in boreal and montane forest ecosystems. To interpret the sensitivity of epiphytic bryophytes for N deposition and to determine their critical load (CL) in a subtropical montane cloud forest, community-level, physiological and chemical responses of epiphytic bryophytes were tested in a 2-year field experiment of N additions. The results showed a significant decrease in the cover of the bryophyte communities at an N addition level of 7.4 kg ha-1 yr-1, which is consistent with declines in the biomass production, vitality, and net photosynthetic rate responses of two dominant bryophyte species. Given the background N deposition rate of 10.5 kg ha-1yr-1 for the study site, a CL of N deposition is therefore estimated as ca. 18 kg N ha-1 yr-1. A disordered cellular carbon (C) metabolism, including photosynthesis inhibition and ensuing chlorophyll degradation, due to the leakage of magnesium and potassium and corresponding downstream effects, along with direct toxic effects of excessive N additions is suggested as the main mechanism driving the decline of epiphytic bryophytes. Our results confirmed the process of C metabolism and the chemical stability of epiphytic bryophytes are strongly influenced by N addition levels; when coupled to the strong correlations found with the loss of bryophytes, this study provides important and timely evidence on the response mechanisms of bryophytes in an increasingly N-polluted world. In addition, this study underlines a general decline in community heterogeneity and biomass production of epiphytic bryophytes induced by increasing N deposition.


Asunto(s)
Contaminantes Atmosféricos/análisis , Briófitas/química , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , Biomasa , Briófitas/metabolismo , Ecosistema , Contaminación Ambiental , Bosques , Fotosíntesis
10.
PLoS One ; 11(8): e0161492, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27560190

RESUMEN

Atmospheric depositions pose significant threats to biodiversity and ecosystem function. However, the underlying physiological mechanisms are not well understood, and few studies have considered the combined effects and interactions of multiple pollutants. This in situ study explored the physiological responses of two epiphytic bryophytes to combined addition of nitrogen, phosphorus and sulfur. We investigated the electrical conductivity (EC), total chlorophyll concentration (Chl), nutrient stoichiometry and chlorophyll fluorescence signals in a subtropical montane cloud forest in south-west China. The results showed that enhanced fertilizer additions imposed detrimental effects on bryophytes, and the combined enrichment of simulated fertilization exerted limited synergistic effects in their natural environments. On the whole, EC, Chl, the effective quantum yield of photosystem II (ΦPSII) and photochemical quenching (qP) were the more reliable indicators of increased artificial fertilization. However, conclusions on nutrient stoichiometry should be drawn cautiously concerning the saturation uptake and nutrient interactions in bryophytes. Finally, we discuss the limitations of prevailing fertilization experiments and emphasize the importance of long-term data available for future investigations.


Asunto(s)
Briófitas/fisiología , Nitrógeno/análisis , Fósforo/análisis , Azufre/análisis , Atmósfera , Biodiversidad , China , Clorofila/química , Clorofila A , Conductividad Eléctrica , Bosques , Espectrometría de Fluorescencia , Árboles
11.
Front Plant Sci ; 7: 416, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27066052

RESUMEN

Locally available resources can be shared within clonal plant systems through physiological integration, thus enhancing their survival and growth. Most epiphytes exhibit clonal growth habit, but few studies have tested effects of physiological integration (resource sharing) on survival and growth of epiphytes and whether such effects vary with species. We conducted two experiments, one on individuals (single ramets) and another on groups (several ramets within a plot), with severed and intact rhizome treatments (without and with physiological integration) on two dominant epiphytic ferns (Polypodiodes subamoena and Lepisorus scolopendrium) in a subtropical montane moist forest in Southwest China. Rhizome severing (preventing integration) significantly reduced ramet survival in the individual experiment and number of surviving ramets in the group experiment, and it also decreased biomass of both species in both experiments. However, the magnitude of such integration effects did not vary significantly between the two species. We conclude that resource sharing may be a general strategy for clonal epiphytes to adapt to forest canopies where resources are limited and heterogeneously distributed in space and time.

12.
Sci Rep ; 6: 30408, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27460310

RESUMEN

Without any root contact with the soil, epiphytic bryophytes must experience and explore poor, patchy, and heterogeneous habitats; while, the nitrogen (N) uptake and use strategies of these organisms remain uncharacterized, which obscures their roles in the N cycle. To investigate the N sources, N preferences, and responses to enhanced N deposition in epiphytic bryophytes, we carried out an in situ manipulation experiment via the (15)N labelling technique in an Asian cloud forest. Epiphytic bryophytes obtained more N from air deposition than from the bark, but the contribution of N from the bark was non-negligible. Glycine accounted for 28.4% to 44.5% of the total N in bryophyte tissue, which implies that organic N might serve as an important N source. Increased N deposition increased the total N uptake, but did not alter the N preference of the epiphytic bryophytes. This study provides sound evidence that epiphytic bryophytes could take up N from the bark and wet deposition in both organic and inorganic N forms. It is thus important to consider organic N and bark N sources, which were usually neglected, when estimating the role of epiphytic bryophytes in N cycling and the impacts of N deposition on epiphytic bryophytes in cloud forests.


Asunto(s)
Briófitas/metabolismo , Nitrógeno/metabolismo , Bosque Lluvioso , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA