Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(6): 2063-2070, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38299886

RESUMEN

On-chip integrated meta-optics promise to achieve high-performance and compact integrated photonic devices. To arbitrarily engineer the optical trajectory along the propagation path in an on-chip integrated scheme is of significance in fundamental physics and various emerging applications. Here, we experimentally demonstrate an on-chip metasurface integrated on a waveguide to enable predefined arbitrary optical trajectories in the visible regime. By transformation of the transverse phase to generate longitudinal mapping, the guided waves are extracted and molded into any different optical trajectories (parabola, hyperbola, and cosine). More intriguingly, predefined polarization states with longitudinal variation are also successfully imparted along the trajectory. Owing to the on-chip propagation scheme, the trajectories are uniquely free from zero-order diffraction interference, naturally having a higher signal-to-noise ratio beyond conventional free-space forms. Overall, such on-chip optical trajectory engineering allows for miniaturized integration and can find paths in potential applications of complex optical manipulation, advanced laser fabrication, and microscopic imaging.

2.
Appl Microbiol Biotechnol ; 108(1): 244, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421461

RESUMEN

Candida albicans, one of the most prevalent conditional pathogenic fungi, can cause local superficial infections and lethal systemic infections, especially in the immunocompromised population. Secretory immunoglobulin A (sIgA) is an important immune protein regulating the pathogenicity of C. albicans. However, the actions and mechanisms that sIgA exerts directly against C. albicans are still unclear. Here, we investigated that sIgA directs against C. albicans hyphal growth and virulence to oral epithelial cells. Our results indicated that sIgA significantly inhibited C. albicans hyphal growth, adhesion, and damage to oral epithelial cells compared with IgG. According to the transcriptome and RT-PCR analysis, sIgA significantly affected the ergosterol biosynthesis pathway. Furthermore, sIgA significantly reduced the ergosterol levels, while the addition of exogenous ergosterol restored C. albicans hyphal growth and adhesion to oral epithelial cells, indicating that sIgA suppressed the growth of hyphae and the pathogenicity of C. albicans by reducing its ergosterol levels. By employing the key genes mutants (erg11Δ/Δ, erg3Δ/Δ, and erg3Δ/Δ erg11Δ/Δ) from the ergosterol pathway, sIgA lost the hyphal inhibition on these mutants, while sIgA also reduced the inhibitory effects of erg11Δ/Δ and erg3Δ/Δ and lost the inhibition of erg3Δ/Δ erg11Δ/Δ on the adhesion to oral epithelial cells, further proving the hyphal repression of sIgA through the ergosterol pathway. We demonstrated for the first time that sIgA inhibited C. albicans hyphal development and virulence by affecting ergosterol biosynthesis and suggest that ergosterol is a crucial regulator of C. albicans-host cell interactions. KEY POINTS: • sIgA repressed C. albicans hyphal growth • sIgA inhibited C. albicans virulence to host cells • sIgA affected C. albicans hyphae and virulence by reducing its ergosterol levels.


Asunto(s)
Candida albicans , Células Epiteliales , Virulencia , Candida albicans/genética , Ergosterol , Inmunoglobulina A Secretora
3.
Appl Microbiol Biotechnol ; 107(1): 355-367, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36441207

RESUMEN

Candida albicans is the main conditional pathogenic fungus among the human microbiome. Extracellular vesicles (EVs) secreted by C. albicans are important for its pathogenesis. However, the effects and mechanisms of EVs on C. albicans own growth are not clear. Here, we isolated EVs from C. albicans cells grown in four culture media, including RPMI 1640, DMEM, YPD, and YNB, and measured their effects on the own growth of C. albicans in these media. All the C. albicans EVs from the four media could promote the growth of C. albicans in RPMI 1640 and DMEM media, but had no effects in YPD and YNB media, indicating that the effects of EVs on C. albicans growth were dependent on some media contents. By comparing the media contents and transcriptome analysis, arginine was identified as the key factor for the growth promotion of C. albicans EVs. EVs activated the L-arginine/nitric oxide pathway to promote the growth of C. albicans through that EVs increased the NO levels and upregulated the expression of NO dioxygenase gene YHB1 to reduce the intracellular reactive oxygen species (ROS) and cell apoptosis. During the host cell infections, C. albicans EVs synergistically enhanced the destructive effects of C. albicans to host cells, including RAW264.7, HOK, TR146, and HGEC, suggesting that the growth promotion by EVs enhanced the pathogenesis of C. albicans. Our results demonstrated the important roles of EVs on C. albicans own growth for the first time and highlight its synergism with C. albicans to increase the pathogenesis. KEY POINTS: • C. albicans extracellular vesicles (EVs) promoted its own growth. • EVs activated the l-arginine/NO pathway to reduce ROS and apoptosis of C. albicans. • EVs enhanced the damage to the host cell caused by C. albicans.


Asunto(s)
Candida albicans , Vesículas Extracelulares , Humanos , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vesículas Extracelulares/metabolismo , Arginina/metabolismo
4.
Nano Lett ; 22(24): 9990-9996, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36490382

RESUMEN

Devices used for meta-optics display are currently undergoing a revolutionary transition from static to dynamic. Despite various tuning strategy demonstrations such as mechanical, electrical, optical, and thermal tunings, a longstanding challenge for their practical application has been the achievement of a conveniently accessible real-life tuning scheme for realizing versatile functionality dynamics outside the laboratory. In this study, we demonstrate a practical tuning strategy to realize a dynamic color printing with a switchable meta-holography exhibition based on hydrogel-based nanocavities. On the basis of the inflation sensitivity of a hydrogel to humidity alteration, its transmissive color was notably tuned from 450 to 750 nm. More intriguingly, by controlling the sample dry/immersed states in real time, we successfully enabled dual-channel switchable meta-holography. With the advantages of facile architecture, daily stimulus with large-area modulation, and high chromaticity, our proposed hydrogel-based nanocavities provide a promising path toward tunable display/encryption, optical sensors, and next-generation display technology.


Asunto(s)
Holografía , Hidrogeles , Electricidad , Humedad , Impresión Tridimensional
5.
BMC Microbiol ; 22(1): 207, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028794

RESUMEN

BACKGROUND: Streptococcus pyogenes is an important global human pathogen that causes pharyngitis, and antibacterial therapy has become an important part of the overall therapy for pharyngitis. As natural derivatives, honey and green tea are often recommended for patients with pharyngitis in traditional Chinese medicine without experimental theoretical basis on wether the combined effect of honey and green tea on pharyngitis is better than they alone. The aims of this study were to explore the effects of artificial honey (AH) and epigallocatechin-3-gallate (EGCG) on S. pyogenes and elucidate the possible mechanisms, which were investigated using MIC (the minimum inhibitory concentration), FIC (fractional inhibitory concentration) index, growth pattern, biofilm formation and RT-qPCR. RESULTS: The MIC of AH on S. pyogenes was 12.5% (v/v) and the MIC of EGCG was 1250 µg/ml. The FIC index of AH and EGCG was 0.5. The planktonic cell growth, growth pattern and biofilm formation assays showed that AH and EGCG mixture had stronger inhibitory effect on S. pyogenes than they alone. RT-qPCR confirmed that the expression of hasA and luxS gene were inhibited by AH and EGCG mixture. CONCLUSIONS: AH and EGCG mixture can inhibit the planktonic cell growth, biofilm formation and some virulence genes expression of S. pyogenes, better than they alone. The combination of honey and green tea have the potential to treat pharyngitis as natural derivatives, avoiding drug resistance and double infection.


Asunto(s)
Catequina , Miel , Faringitis , Animales , Biopelículas , Catequina/análogos & derivados , Humanos , Masculino , Streptococcus pyogenes ,
6.
Opt Lett ; 47(2): 369-372, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030608

RESUMEN

Artificial optical nanostructures including three-dimensional (3D) metamaterials and two-dimensional (2D) metasurfaces have shown overwhelming capability to control electromagnetic waves in desirable manners. However, the challenges of manufacturing a complex 3D bulk architecture or achieving nanoscale alignment between multilayers limit their practical applications, and they are unable to be used in on-chip integrated photonic devices. Therefore, the emerging dimensionality-reduction to on-chip metadevices would be of promising research value. Here, we propose a visible-frequency on-chip dual-layer design by cascading one-dimensional (1D) plasmonic metawires with metagratings, which can effectively manipulate surface plasmon polariton (SPP) wavefronts and exhibit on-chip asymmetric beam-steering functionality. Our 1D metawires consist of trapezoidal plasmonic nanoantennas and can enable broadband (460-700 nm) on-chip beam-deflection with a high conversion efficiency. The cascading plasmonic coupling between metawires/metagrating is further demonstrated with broadband asymmetric propagation performance, which is crucial for on-chip plasmonic device development. Finally, we study and theoretically verify a cascade system that integrates a dual-functional (convergent/divergent) lens for the forward/backward propagation, respectively. Compared with conventional free-space multilayer metasurfaces, on-chip 1D metawires enjoy single-time lithography processing and no alignment requirement for implementation in multifunctional devices. We believe that the proof-of-concept on-chip metawires study will pave a new, to the best of our knowledge, way for creating multifunctional photonic integrated devices and hold tremendous potential in realizing on-chip transformation optics, information processing, spectrometers, as well as optical sensors.

7.
Bioorg Chem ; 124: 105828, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490584

RESUMEN

Myocardial ischemia/reperfusion (MI/R) has been a challenge for global public health. Activation of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling could attenuate MI/R injury by maintaining cell redox balance and reducing oxidative damage. Cinnamamide derivatives have been proven to be a class of potential Nrf2 activators and cardioprotective agents. The development of novel cinnamamide derivatives to combat oxidative stress in cardiomyocytes is highly desirable. In this study, twenty-three cinnamamide-barbiturate hybrids were studied. Cell-based assays showed that most of the compounds exhibited excellent protective activity against H2O2-induced oxidative injury in H9c2 cells. Notably, compound 7w, which had the highest activity and low cytotoxicity, was demonstrated to remarkably reduce intracellular ROS accumulation by activating the mRNA expression of Nrf2 and its downstream antioxidant gene HO-1, indicating a novel promising antioxidant and Nrf2 activator. The probable binding mode between protein Keap1 and compound 7w was also studied via molecule docking. Furthermore, we found that the administration of compound 7w could significantly reduce the cardiac infarct size and improve the cardiac function against MI/R injury in rats, as well as decrease cardiac oxidative stress. Taken together, we report, for the first time, that cinnamamide-barbiturate hybrids are a novel class of potential cardioprotective agents. The excellent cardioprotective action of such compounds rely on enhancing the endogenous antioxidative system by upregulating the Nrf2 signaling pathway in vitro and in vivo against MI/R damage. These findings provide a new perspective for designing cinnamamide-barbiturate hybrids as a novel class of Nrf2 activator against cardiovascular diseases.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Antioxidantes/farmacología , Barbitúricos/farmacología , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Cinamatos , Peróxido de Hidrógeno/farmacología , Proteína 1 Asociada A ECH Tipo Kelch , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas
8.
Age Ageing ; 51(2)2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180283

RESUMEN

BACKGROUND: China has the biggest stroke burden in the world. Continued measures have been taken to enhance post-stroke rehabilitation management in the last two decades. The weak link is with home-based rehabilitation, with more attention and resources devoted to inpatient rehabilitation. OBJECTIVE: to address the service gap, this study tested a home-based transitional care model for stroke survivors. METHODS: a randomized controlled trial was conducted from February 2019 to May 2020 in Harbin, China, involving 116 patients with ischemic stroke. The intervention group participants (n = 58, 50%) received a 12-week home-based care program with components of transitional care measures and the national guidelines for facilitating patients to perform home-based exercises with continued monitoring and gradual progression. Control group participants received standard care including medication advice, rehabilitation exercise and one nurse-initiated follow-up call. Data were collected at baseline and after a 90-day (post-intervention) and a 180-day (post-intervention) follow-up. The primary outcome was quality of life (QOL), measured using the EuroQol-Five Dimension 5-Level scale (EQ-5D-5L). RESULTS: both intervention and control groups showed improvement in EQ-5D-5L from baseline to post-intervention (0.66 versus 0.83, P < 0.001) and (0.66 versus 0.77, P < 0.001), respectively, and there was significant group-by-time interaction in EuroQol-Visual Analogue Scale from baseline to post-intervention at 90 days and follow-up at 180 days with the intervention group experiencing better improvement. Similarly, significant interaction effects were also found in the Stroke Impact Symptom scale, self-efficacy and modified Barthel Index. CONCLUSIONS: home-based transitional care was effective in improving QOL, symptoms, self-efficacy and activities of daily living.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Cuidado de Transición , Actividades Cotidianas , China , Humanos , Calidad de Vida , Rehabilitación de Accidente Cerebrovascular/métodos , Sobrevivientes
9.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613775

RESUMEN

The properties of titanium implants are affected by bio-aging due to long-term exposure to the oral microenvironment. This study aimed to investigate probable changes in titanium plates after different biofilm bio-aging processes, representing various oral status. Titanium plates with different surface treatments were used, including polish, sandblasted with large grit and acid etched (SLA), microarc oxidation (MAO), and hydroxyapatite coating (HA). We established dual-species biofilms of Staphylococcus aureus (S. aureus)-Candida albicans (C. albicans) and saliva biofilms from the healthy and patients with stage III-IV periodontitis, respectively. After bio-aging with these biofilms for 30 days, the surface morphology, chemical composition, and water contact angles were measured. The adhesion of human gingival epithelial cells, human gingival fibroblasts, and three-species biofilms (Streptococcus sanguis, Porphyromonas gingivalis, and Fusobacterium nucleatum) were evaluated. The polished specimens showed no significant changes after bio-aging with these biofilms. The MAO- and SLA-treated samples showed mild corrosion after bio-aging with the salivary biofilms. The HA-coated specimens were the most vulnerable. Salivary biofilms, especially saliva from patients with periodontitis, exhibited a more distinct erosion on the HA-coating than the S. aureus-C. albicans dual-biofilms. The coating became thinner and even fell from the substrate. The surface became more hydrophilic and more prone to the adhesion of bacteria. The S. aureus-C. albicans dual-biofilms had a comparatively mild corrosion effect on these samples. The HA-coated samples showed more severe erosion after bio-aging with the salivary biofilms from patients with periodontitis compared to those of the healthy, which emphasized the importance of oral hygiene and periodontal health to implants in the long run.


Asunto(s)
Implantes Dentales , Periodontitis , Humanos , Titanio/farmacología , Titanio/química , Staphylococcus aureus , Propiedades de Superficie , Biopelículas , Materiales Dentales/farmacología
10.
Opt Express ; 29(21): 33954-33961, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809195

RESUMEN

As an emerging category of two-faced 2D architecture, the Janus metasurface aims to explore another universal optical property, that is, the wavevector direction (k-direction), and to enable the asymmetric transmission between the opposite directional incidences. It exhibits significant potential in creating versatile multiplexing metasurfaces and an optical isolator in optical communication applications. However, most previous asymmetric functionality shows merely one-way functionality with the other-way simply muted or demands multilayered nanostructure fabrication and alignment. Hence, it remains a great challenge to make a monolayer-nanotextured Janus metasurface with dual-encryption freedom and conquering the difficulty for multilayer alignment and practical operation bandwidth. In this work, we have proposed and experimentally demonstrated a new strategy of a dual-encryption Janus metasurface design with a simple monolayer-nanotextured metasurface coupled with a commercialized film of the half-wave plate. Utilizing the hybridization from two independent geometrical dimensions of rectangular-antennas, our approach ingeniously transforms the polarization-multiplexing into the dual-directional channels. A series of calculations and experimental results demonstrate that our asymmetric approach simultaneously constructs completely independent imaging encryptions for both forward and backward directions. Additionally, our proposed approach becomes a practical scheme with broadband visible-frequency operation and great simplicity in design and nanofabrication. We believe the universal scheme could facilitate to increase the information encoding capacity and holographic multiplexing channels by expanding the illumination wavevector to the full-space (+/-), and it paves the route toward the potential applications in on-chip integration, telecommunications, encryption, information processing, and communication.

11.
Arch Microbiol ; 204(1): 79, 2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-34954815

RESUMEN

Genome editing technology has progressed rapidly in recent years. Although traditional gene-editing methods, including homologous recombination, zinc finger endonucleases, and transcription activator-like effector nucleases, have substantial implications for research in genetics and molecular biology, but they have remarkable limitations, including their low efficiency, high error rate, and complex design. A new gene-editing technology, the CRISPR/Cas system, was developed based on studies of archaeal and bacterial immune responses to viruses. Owing to its high target efficiency, simple primer design, and wide applications, the CRISPR/Cas system, whose developers were awarded the Nobel Prize in Chemistry in 2020, has become the dominant genomic editing technology in academia and the pharmaceutical industry. Here, we briefly introduce the CRISPR/Cas system and its main applications for genome engineering, metabolic engineering, and transcriptional regulation in yeast, filamentous fungi, and macrofungi. The polygene and polyploid editing, construction of yeast chromosomes, yeast library creation, regulation of metabolic pathways, and CRISPR activation/CRISPR interference systems are mainly summarized and discussed. The potential applications for the treatment of fungal infections and the further transformation and application of the CRISPR/Cas system in fungi are also proposed and discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Hongos/genética , Saccharomyces cerevisiae/genética , Tecnología
12.
Nanotechnology ; 32(2): 025204, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32987375

RESUMEN

As an emerging field in the discipline of optics, plasmonics and metasurfaces have been demonstrated to enable a new degree of freedom to manipulate light for arbitrary beam steering, spectral splitting as well as precise wavefront shaping. However, it has been mostly studied in parallel with the field of diffractive optics, and awaits the unveiling of how the hybridizations between plasmonic effect and diffraction effect interact and impact. Here, we have theoretically proposed a new type of polarization-insensitive meta-grating structure across the broadband visible regime. The structure design combines the width gradient (critical resonant length) from a trapezoid-nanoantenna with the height gradient from a blazed grating profile. The hybridized meta-grating creates both plasmonic effect and grating effect, which enables all the optical incident photons to be directed to the same orientation regardless of the light polarization. As we know, both metasurfaces and diffractive optical elements (such as gratings) are, more often than not, quite sensitive to the incident light polarization. Moreover, if placing our meta-grating on a flexible/stretchable substrate (such as polydimethylsiloxane), the outgoing angle can be effectively adjusted by tuning the period or density of meta-grating arrays. Such meta-grating architectures can be potentially manufactured by existing photolithography and nanoimprint techniques, and can easily find a wide range of practical polarization-insensitive applications, including broadband deflector and emitter, tunable display and imaging device, high signal-to-noise ratio spectrometer, polarization-insensitive plasmonic coupler, etc.

13.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200406, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34455846

RESUMEN

The Bhatnagar-Gross-Krook (BGK) single-relaxation-time collision model for the Boltzmann equation serves as the foundation of the lattice BGK (LBGK) method developed in recent years. The description of the collision as a uniform relaxation process of the distribution function towards its equilibrium is, in many scenarios, simplistic. Based on a previous series of papers, we present a collision model formulated as independent relaxations of the irreducible components of the Hermite coefficients in the reference frame moving with the fluid. These components, corresponding to the irreducible representation of the rotation group, are the minimum tensor components that can be separately relaxed without violating rotation symmetry. For the 2nd, 3rd and 4th moments, respectively, two, two and three independent relaxation rates can exist, giving rise to the shear and bulk viscosity, thermal diffusivity and some high-order relaxation process not explicitly manifested in the Navier-Stokes-Fourier equations. Using the binomial transform, the Hermite coefficients are evaluated in the absolute frame to avoid the numerical dissipation introduced by interpolation. Extensive numerical verification is also provided. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

14.
Appl Microbiol Biotechnol ; 105(6): 2485-2496, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33635358

RESUMEN

The roles of Candida albicans CHK1, a key gene from two-component system, in oral mucosal infection are not clear. This study evaluated the key roles of CHK1 gene in vitro and in vivo. The expression of CHK1 and its regulated virulence factors were tested during the oral epithelial cell infection. The production of lactate dehydrogenase, ROS, and IL-1α combined with the confocal and scanning electron microscope observation was employed to identify the capability of CHK1 in damaging the epithelial cells. Both immunocompetent and immunodeficient mice oropharyngeal infection models were involved to confirm the roles of CHK1 gene in vivo. The expression of CHK1 gene was significantly increased during the oral epithelial cell infection. The chk1Δ/Δ mutant failed to damage the epithelial cells or induce IL-α and ROS production. Interestingly, chk1Δ/Δ can also form the similar hyphae with WT and complementary strains. Accordingly, chk1Δ/Δ did not affect the adhesion and invasion rates of C. albicans to oral epithelial cells. However, chk1Δ/Δ significantly decreased the expression levels of the virulence factors, including ALS2, SAP6, and YWP1. The chk1Δ/Δ also failed to cause oral candidiasis in both immunocompetent and immunodeficient mice indicating that CHK1 gene from the two-component system is essential for the pathogenicity of C. albicans. KEY POINTS: • CHK1gene is essential for C. albicans in oral candidiasis • C. albicans without CHK1 gene can form "non-pathogenic" hyphae. • CHK1 gene regulates the virulence of C. albicans.


Asunto(s)
Candidiasis Bucal , Candidiasis , Animales , Candida albicans/genética , Proteínas Fúngicas/genética , Ratones , Virulencia
15.
J Math Biol ; 82(4): 24, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649976

RESUMEN

In this paper, we introduce a reaction-diffusion malaria model which incorporates vector-bias, spatial heterogeneity, sensitive and resistant strains. The main question that we study is the threshold dynamics of the model, in particular, whether the existence of spatial structure would allow two strains to coexist. In order to achieve this goal, we define the basic reproduction number [Formula: see text] and introduce the invasion reproduction number [Formula: see text] for strain [Formula: see text]. A quantitative analysis shows that if [Formula: see text], then disease-free steady state is globally asymptotically stable, while competitive exclusion, where strain i persists and strain j dies out, is a possible outcome when [Formula: see text] [Formula: see text], and a unique solution with two strains coexist to the model is globally asymptotically stable if [Formula: see text], [Formula: see text]. Numerical simulations reinforce these analytical results and demonstrate epidemiological interaction between two strains, discuss the influence of resistant strains and study the effects of vector-bias on the transmission of malaria.


Asunto(s)
Malaria , Modelos Biológicos , Plasmodium , Animales , Número Básico de Reproducción , Simulación por Computador , Humanos , Malaria/transmisión , Mosquitos Vectores , Plasmodium/clasificación , Plasmodium/fisiología
16.
J Cell Physiol ; 235(10): 6592-6604, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32067228

RESUMEN

An increasing number of studies have explored the relationship of long noncoding RNAs (lncRNAs) with cervical cancer, yet the role of LINC00511 in cervical cancer still remains elusive. The current dissertation was intended to explore the effect of LINC00511 on cervical cancer development by regulating phospholipase D1 (PLD1) expression through transcription factor retinoic X receptor alpha (RXRA). Differentially expressed lncRNA and messenger RNA related to cervical cancer were screened by microarray-based expression profiling. Cervical cancer and paracancerous tissues were harvested to determine the LINC00511 expression using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The relationship among LINC00511, PLD1 promoter activity, and RXRA were determined via RNA immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays. Proliferation, autophagy, and apoptosis of cervical cancer cells were detected with a series of experiments. Tumor xenograft in nude mice was employed to determine the influence of LINC00511 and PLD1 on tumor formation and growth of cervical cancer in vivo. LINC00511 might influence the occurrence of cervical cancer by upregulating PLD1 expression via recruiting transcription factor RXRA. LINC00511 and PLD1 expressions were remarkably high in cervical cancer tissues and cells. LINC00511 combined with RXRA, and overexpression of LINC00511 in cervical cancer cells elevated PLD1 expression. Si-LINC00511, si-RXRA or si-PLD1 triggered repression of proliferation and promotion of autophagy and apoptosis of cervical cancer cells. In vivo experiment, si-LINC00511, or si-PLD1 inhibited the tumorigenic ability of nude mice. Collectively, this study suggests that LINC00511 acts as an oncogenic lncRNA in cervical cancer via the promotion of transcription factor RXRA-regulated PLD1.


Asunto(s)
Apoptosis/genética , Autofagia/genética , Fosfolipasa D/genética , ARN Largo no Codificante/genética , Receptor alfa X Retinoide/genética , Neoplasias del Cuello Uterino/genética , Adulto , Anciano , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Factores de Transcripción/genética , Regulación hacia Arriba/genética , Neoplasias del Cuello Uterino/patología
17.
Opt Express ; 28(16): 23652-23659, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752358

RESUMEN

A new type of diffractive lens based on hybridized Fabry-Perot (FP) cavities with high-NA and achromatic features for arbitrary dual-wavelengths is theoretically proposed and demonstrated. We utilize the subwavelength-scale metal-insulator-metal nanocavity to form a Fresnel zone plate (MIM-FZP) that benefits from both spectral selectivity and high numerical aperture (NA > 0.9) to enable lensing functionality. By taking advantage of the different transmission orders from MIM, any arbitrary dual-wavelength achromatic focusing design is achieved. Using this approach, we merge two independent MIM-FZP designs and realize achromatic focusing performance at the selected dual-wavelength of 400/600 nm. Furthermore, the achromatic lens also exhibits a crucial potential for dynamically tuning of the operation wavelengths and focusing lengths as actively scaling the core layer thickness of MIM. The unique MIM-FZP design can be practically fabricated using a grayscale lithography technique. We believe such high-NA and achromatic optical devices enjoy great simplicity for structural design and can easily find applications including high-resolution imaging, new-generation integrated optoelectronic devices, confocal collimation, and achromatic lens, etc.

18.
Opt Lett ; 45(20): 5640-5643, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33057246

RESUMEN

Metasurfaces are composed of flat, ultrathin subwavelength nanoantennas with strong capability in manipulating light propagation by modulations on its phase, amplitude, and polarization. For instance, the invention of two-dimensional (2D) metalenses has enabled light focusing and imaging in three-dimensional (3D) free space with miniaturized thickness and device size at a planar surface. However, such inherent form of 2D arrays and focusing functionality at 3D optical free-space limits the degree of freedom for light propagation and manipulation along a 2D planar surface and eventually the possibility of on-chip photonic system integration. Here, we theoretically study and demonstrate a new type of planar on-chip metalens, which enables light focusing and strong localization at a 2D surface. The planar on-chip architecture design is based on the one-dimensional (1D) length or width gradient trench metalens (GTM), which could yield the elaborately engineered phase shift for propagating light within the on-chip waveguide at the visible wavelength of 500 nm. By generating 1D phase arrangement at the nanoscale, a miniature on-chip metalens with ∼3×0.5µm dimension could achieve light focusing on a 2D waveguide surface with the flexibility to design scalable focal lengths and ultra-high numerical aperture of up to ∼0.99. Additionally, GTM metalens designs could also exhibit overlapped high depth-of-focus, which consequently could behave as achromatic-like lensing at the selected focal plane. Furthermore, we manifest that the focusing functionality can also be subject to dynamically tuning and switching on-and-off with TE/TM polarization change or waveguide index alteration. We believe this new form of on-chip 1D metalens holds potential applications including on-chip light manipulation functionality of focusing and diverging, optical on-chip sensing, next-generation on-chip optical communication, signal processing as well as imaging devices, etc.

19.
J Cell Biochem ; 120(6): 10796-10811, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30701575

RESUMEN

OBJECTIVE: To figure out the relationship between SMAD3 and serine-threonine tyrosine kinase (STYK1) in ovarian carcinoma cell's paclitaxel resistance. METHODS: The quantitative reverse transcription-polymerase chain reactpostion and Western blot analysis were used to analyze RNA and protein content of SMAD3 and STYK1, respectively. The chromatin immunoprecipitation assay was used to confirm the binding site of SMAD3 to the STYK1 promoter region. Transwell assay was used to detect cell invasion and migration, and Western Blot was used to detect the marker proteins (vimentin and E-cadherin) of epithelial-mesenchymal transition (EMT) process. MTT and apoptosis assay were used to, respectively, measure cell vitality and apoptosis. In vivo experiments, rats were subcutaneously implanted with A2780 cells to establish an animal model of ovarian cancer and the survival curve was drawn. RESULTS: Upregulating SMAD3 induced the expression of STYK1 in ovarian cancer cell lines. STYK1 is a direct transcriptional target of SMAD3. Upregulating STYK1 improved the paclitaxel resistance of ovarian carcinoma cells. Upregulating STYK1 promoted cell invasion, migration, and the EMT process, and SMAD3 had the same effect with STYK1 on cell invasion, cell migration, and the EMT process. The animal assay showed that downregulating STYK1 inhibited the EMT process and the paclitaxel resistance, further promoting the treatment of cervical cancer. CONCLUSION: SMAD3 combined with the promoter region of STYK1 to promote the transcription process of STYK1, thereby promoting the EMT process and paclitaxel resistance of ovarian cancer cells.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteína smad3/genética , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/mortalidad , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Paclitaxel/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Endogámicas F344 , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Proteína smad3/antagonistas & inhibidores , Proteína smad3/metabolismo , Análisis de Supervivencia , Transcripción Genética , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Opt Express ; 27(26): 37318-37326, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878514

RESUMEN

Diffractive grating and plasmonic metasurface have always been developing as two parallel optical domains, which have not met for studying their hybridization to discover new applications and potentials. Here, we proposed a novel meta-grating design, which hybridizes the metasurface interfacial gradient with the blazed grating profile. The unique architecture takes advantage of both grating effect and plasmonic resonances with minimum cross-coupling, thus leading to the polarization-selective behaviors to steer different polarized light to drastically inverse directions (> 90°). Furthermore, the hybridized surface also exhibits angle-dependent broadband absorptive tunability (∼ 5% - 86%) by migrating the strong blazed order and plasmonic order at the far field. We believe that the integrated meta-grating device would suggest various potential applications including polarization beam splitters, high signal-to-noise ratio (SNR) optical spectrometer, high-efficiency plasmonic couplers and filter, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA