RESUMEN
Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.
RESUMEN
Electrically activated soft actuators capable of large deformation are powerful and broadly applicable in multiple fields. However, designing soft actuators that can withstand a high strain, provide a large actuation displacement, and exhibit stable reversibility are still the main challenges toward their practical application. Here, for the first time, we report a two-dimensional (2D) conductive metal-organic framework (MOF) based electrochemical actuator, which consists of vertically oriented and hierarchical Ni-CAT NWAs/CNF electrodes through the use of a facile one-step in situ hydrothermal growth method. The soft actuator prepared in this study demonstrated improvements in actuation performance and benefits from both the intrinsically ordered porous architecture and efficient transfer pathways for fast ion and electron transport; furthermore, this actuator facilitated a considerably high diffusion rate and low interfacial resistance. In particular, the actuator demonstrated a rapid response (<19 s) at a 3 V DC input, large actuation displacement (12.1 mm), and a correspondingly high strain of 0.36% under a square-wave AC voltage of ±3 V. Specifically, the actuator achieved a broad-band frequency response (0.1-20 Hz) and long-term cyclability in air (10000 cycles) with a negligible degradation in actuation performance. Our work demonstrates new opportunities for bioinspired artificial actuators and overcomes current limitations in electrode materials for soft robotics and bionics.
RESUMEN
The photoinduced dynamic behavior of flexible materials has received considerable attention for potential applications, such as in data storage or as smart optical devices and molecular mechanical actuators. Until now, precisely controlling expansion and contraction with light has remained a challenge. Unraveling the detailed mechanisms of photoinduced structural transformations remains a critical step necessary to understand the molecular architecture necessary for the design of sensitive photomechanical actuators. Herein, a two-dimensional flexible metal-organic framework [Zn2 (bdc)2 (3-CH3 -spy)2 ]â H2 O (Zn2 -1; H2 bdc=1,4-benzenedicaboxylic acid; 3-CH3 -spy=3-methylstyrylpyridine) with a positive volumetric thermal expansion coefficient of +78.78×10-6 â K-1 is reported. Upon light irradiation at different wavelengths, the MOF underwent a [2+2] cycloaddition, which afforded a family of isomeric, three-dimensional MOFs (Zn2 -2 n, n=a-d) in a single-crystal-to-single-crystal (SCSC) manner. An unprecedented phenomenon, that is, photoinduced nonlinear contraction (PINC), was observed during this conversion. The PINC is caused by conformational changes in the 3-CH3 -spy and bdc2- ligands, the bending of metal-ligand bonds, and the local distortion of the paddle-wheel SBUs. The formation of a "wrinkle morphology" on the crystal surface after the photoreaction was observed by AFM. This PINC behavior can broaden the studies on materials expansion and offer a photodriven approach for the future design of supersensitive photomechanical actuators.
RESUMEN
Photoreactive olefinic species are incorporated into a metal-organic framework (MOF), [Zn(bdc)(3-F-spy)] (1). Single crystals of 1 are shown to undergo three types of photomechanical macroscopic deformation upon illumination by UV light. To demonstrate the practical potential of this system, the inclusion of 1 in a PVA (polyvinyl alcohol) composite membrane, by exploiting hydrogen-bonding interactions, is presented. Using this composite membrane, the amplification of mechanical stress to achieve macroscopic actuation behavior is demonstrated. These results pave the way for the generation of MOF-based soft photoactuators that produce clearly defined mechanical responses upon irradiation with light. Such systems are anticipated to have considerable potential in photomechanical energy harvesting and conversion systems.
RESUMEN
Flexible metal-organic frameworks (MOFs) have attracted great interest for their dynamically structural transformability in response to external stimuli. Herein, we report a switchable "breathing" or "gate-opening" behavior associated with the phase transformation between a narrow pore (np) and a large pore (lp) in a flexible pillared-layered MOF, denoted as MOF-1 as, which is also confirmed by SCXRD and PXRD. The desolvated phase (MOF-1 des) features a unique stepwise adsorption isotherm for N2 coupled with a pronounced negative gas adsorption pressure. For comparison, however, no appreciable CO2 adsorption and gate-opening phenomenon with stepwise sorption can be observed. Furthermore, the polar micropore walls decorated with thiophene groups in MOF-1 des reveals the selective sorption of toluene over benzene and p-xylene associated with self-structural adjustment in spite of the markedly similar physicochemical properties of these vapor molecules.
RESUMEN
[This corrects the article DOI: 10.1016/j.heliyon.2021.e06317.].
RESUMEN
The oomycete genus Phytophthora includes devastating plant pathogens that are found in almost all ecosystems. We sequenced the genomes of two quarantined Phytophthora species-P. fragariae and P. rubi. Comparing these Phytophthora species and related genera allowed reconstruction of the phylogenetic relationships within the genus Phytophthora and revealed Phytophthora genomic features associated with infection and pathogenicity. We found that several hundred Phytophthora genes are putatively inherited from red algae, but Phytophthora does not have vestigial plastids originating from phototrophs. The horizontally-transferred Phytophthora genes are abundant transposons that "transmit" exogenous gene to Phytophthora species thus bring about the gene recombination possibility. Several expansion events of Phytophthora gene families associated with cell wall biogenesis can be used as mutational targets to elucidate gene function in pathogenic interactions with host plants. This work enhanced the understanding of Phytophthora evolution and will also be helpful for the design of phytopathological control strategies.
RESUMEN
A protonated mononuclear complex [Zn(Hbpvp)Cl3] (1) is assembled by solvothermal reaction of Zn(NO3)2·6H2O with 3,5-bis-(2-(pyridin-4-yl)vinyl)pyridine (bpvp) in DMF/H2O with a few drops of concentrated HCl added. Hydrogen-bonded zigzag chains of 1 crystallize over time to form large-size hollow hexagonal tubular crystals whose evolution from irregular crystal seeds is monitored by SEM and PXRD. Upon UV light irradiation, single crystals of 1 undergo a stereoselective [2+2] photocycloaddition while its Methyl Blue-coated crystals keep intact.
RESUMEN
We hereby report on a pioneering and inspiring solid oxide cell which, assisted by natural gas, utilizes a bifunctional electrolysis cell configuration to effectively consume CO2 to produce CO at the cathode side and simultaneously synthesize highly valuable syngas (mixture of CO and H2) at the anode side via a one-step green process.
RESUMEN
One coordination polymer [Zn2(L)2(bpe)2(H2O)2] (1) (L = 4,4'-((1,2-phenylenebis(methylene))bis(oxy))dibenzoic acid; bpe = (E)-1,2-di(pyridin-4-yl)ethene) was prepared and structurally determined. Compound 1 has a chain structure in which its pair of bpe ligands is arranged in a head-to-tail manner with their C=C bonds being close enough for a [2 + 2] cycloaddition reaction. Upon exposure to UV light, compound 1 undergoes a single-crystal-to-single-crystal (SCSC) [2 + 2] photodimerization to generate one 2D coordination polymer [Zn(L)(rctt-tpcb)0.5(H2O)] (1a) (rctt (regio cis, trans, trans)-tpcb = tetrakis(4-pyridyl)cyclobutane). The tpcb ligands in the crystals of 1a show an intriguing in situ thermal isomerisation. The nanospheres of 1 can be obtained by recrystallization in DMSO/alcohol. The nanospheres of 1a can also be readily produced from the corresponding nanospheres of 1 by the photocyclodimerization method. Compared with those of 1a, the nanospheres of 1 display highly selective sensing of Fe(3+) ions over mixed metal ions through fluorescence quenching. Moreover, the nanospheres of 1a can rapidly adsorb CR (congo red), MB (methylene blue) or RhB (rhodamine B) over MO (methyl orange) from aqueous solutions. This work offers a new photoinduced post-synthetic method for the synthesis of multifunctional MOFs, which show luminescence sensing of Fe(3+) ions and dye adsorption properties.
Asunto(s)
Complejos de Coordinación/química , Compuestos Férricos/análisis , Luminiscencia , Sustancias Luminiscentes/química , Polímeros/química , Zinc/química , Absorción Fisicoquímica , Complejos de Coordinación/síntesis química , Ciclización , Iones/análisis , Sustancias Luminiscentes/síntesis química , Estructura Molecular , Procesos FotoquímicosRESUMEN
In this paper, a nonenzymatic glucose biosensor based on perovskite LaTiO3-Ag0.2(LTA) modified electrode was presented. The morphology and the composition of the perovskite LaTiO3-Ag0.2 nanomaterials were characterized by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The LaTiO3-Ag0.2(LTA) composite was investigated by electrochemical characterization using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimal conditions, CV and chronoamperometry (I-t) study revealed that, compared with the bare glassy carbon electrode (GCE), the modified electrode showed a remarkable increase in the efficiency of the electrocatalytic oxidation of glucose, starting at around +0.70 V (vs. Ag/AgCl). The prepared sensor exhibited a high sensitivity of 784.14 µAmM⻹ cm⻲, a low detection limit of 2.1×10â»7 M and a wide linear range from 2.5 µM to 4 mM (R=0.9997). More importantly, the LTA modified electrode was also relatively insensitive to commonly interfering species such as ascorbic acid (AA), uric acid (UA), dopamine (DA) in high potential. Moreover, the nonenzymatic sensor was applied to the determination of glucose in human serum samples and the results were in good agreement with clinical data. Electrodes modified with perovskite nanomaterials are highly promising for nonenzymatic electrochemical detection of glucose because of their high sensitivity, fast response, excellent stability and good reproducibility.
Asunto(s)
Técnicas Biosensibles/métodos , Glucemia/análisis , Compuestos de Calcio/química , Lantano/química , Nanopartículas/química , Óxidos/química , Plata/química , Titanio/química , Catálisis , Electrodos , Humanos , Límite de Detección , Nanopartículas/ultraestructura , Oxidación-ReducciónRESUMEN
AIM: To predict the probable genomic packaging signal of SARS-CoV by bioinformatics analysis. The derived packaging signal may be used to design antisense RNA and RNA interfere (RNAi) drugs treating SARS. METHODS: Based on the studies about the genomic packaging signals of MHV and BCoV, especially the information about primary and secondary structures, the putative genomic packaging signal of SARS-CoV were analyzed by using bioinformatic tools. Multi-alignment for the genomic sequences was performed among SARS-CoV, MHV, BCoV, PEDV and HCoV 229E. Secondary structures of RNA sequences were also predicted for the identification of the possible genomic packaging signals. Meanwhile, the N and M proteins of all five viruses were analyzed to study the evolutionary relationship with genomic packaging signals. RESULTS: The putative genomic packaging signal of SARS-CoV locates at the 3' end of ORF1b near that of MHV and BCoV, where is the most variable region of this gene. The RNA secondary structure of SARS-CoV genomic packaging signal is very similar to that of MHV and BCoV. The same result was also obtained in studying the genomic packaging signals of PEDV and HCoV 229E. Further more, the genomic sequence multi-alignment indicated that the locations of packaging signals of SARS-CoV, PEDV, and HCoV overlaped each other. It seems that the mutation rate of packaging signal sequences is much higher than the N protein, while only subtle variations for the M protein. CONCLUSIONS: The probable genomic packaging signal of SARS-CoV is analogous to that of MHV and BCoV, with the corresponding secondary RNA structure locating at the similar region of ORF1b. The positions where genomic packaging signals exist have suffered rounds of mutations, which may influence the primary structures of the N and M proteins consequently.