RESUMEN
The nucleus of almost all massive galaxies contains a supermassive black hole (BH)1. The feedback from the accretion of these BHs is often considered to have crucial roles in establishing the quiescence of massive galaxies2-14, although some recent studies show that even galaxies hosting the most active BHs do not exhibit a reduction in their molecular gas reservoirs or star formation rates15-17. Therefore, the influence of BHs on galaxy star formation remains highly debated and lacks direct evidence. Here, based on a large sample of nearby galaxies with measurements of masses of both BHs and atomic hydrogen (HI), the main component of the interstellar medium18, we show that the HI gas mass to stellar masses ratio (µHI = MHI/Mâ) is more strongly correlated with BH masses (MBH) than with any other galaxy parameters, including stellar mass, stellar mass surface density and bulge masses. Moreover, once the µHI-MBH correlation is considered, µHI loses dependence on other galactic parameters, demonstrating that MBH serves as the primary driver of µHI. These findings provide important evidence for how the accumulated energy from BH accretion regulates the cool gas content in galaxies, by ejecting interstellar medium gas and/or suppressing gas cooling from the circumgalactic medium.
RESUMEN
The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Euterios/virología , Evolución Molecular , Genoma Viral/genética , Homología de Secuencia de Ácido Nucleico , Secuencia de Aminoácidos , Animales , Betacoronavirus/química , Betacoronavirus/clasificación , COVID-19 , China/epidemiología , Quirópteros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Genómica , Humanos , Malasia , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Recombinación Genética , SARS-CoV-2 , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/virologíaRESUMEN
Breast cancer (BC) is a complex disease comprising multiple distinct subtypes with different genetic features and pathological characteristics. Although a large number of antineoplastic compounds have been approved for clinical use, patient-to-patient variability in drug response is frequently observed, highlighting the need for efficient treatment prediction for individualized therapy. Several patient-derived models have been established lately for the prediction of drug response. However, each of these models has its limitations that impede their clinical application. Here, we report that the whole-tumor cell culture (WTC) ex vivo model could be stably established from all breast tumors with a high success rate (98 out of 116), and it could reassemble the parental tumors with the endogenous microenvironment. We observed strong clinical associations and predictive values from the investigation of a broad range of BC therapies with WTCs derived from a patient cohort. The accuracy was further supported by the correlation between WTC-based test results and patients' clinical responses in a separate validation study, where the neoadjuvant treatment regimens of 15 BC patients were mimicked. Collectively, the WTC model allows us to accomplish personalized drug testing within 10 d, even for small-sized tumors, highlighting its potential for individualized BC therapy. Furthermore, coupled with genomic and transcriptomic analyses, WTC-based testing can also help to stratify specific patient groups for assignment into appropriate clinical trials, as well as validate potential biomarkers during drug development.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Perfilación de la Expresión Génica , Biomarcadores , Técnicas de Cultivo de Célula , Microambiente TumoralRESUMEN
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Asunto(s)
Variación Genética , Selección Genética , Evolución Molecular , Flujo Génico , Fagaceae/genéticaRESUMEN
Articular cartilage phenotypic homeostasis is crucial for life-long joint function, but the underlying cellular and molecular mechanisms governing chondrocyte stability remain poorly understood. Here, we show that the protein tyrosine phosphatase SHP2 is differentially expressed in articular cartilage (AC) and growth plate cartilage (GPC) and that it negatively regulates cell proliferation and cartilage phenotypic program. Postnatal SHP2 deletion in Prg4+ AC chondrocytes increased articular cellularity and thickness, whereas SHP2 deletion in Acan+ pan-chondrocytes caused excessive GPC chondrocyte proliferation and led to joint malformation post-puberty. These observations were verified in mice and in cultured chondrocytes following treatment with the SHP2 PROTAC inhibitor SHP2D26. Further mechanistic studies indicated that SHP2 negatively regulates SOX9 stability and transcriptional activity by influencing SOX9 phosphorylation and promoting its proteasome degradation. In contrast to published work, SHP2 ablation in chondrocytes did not impact IL-1-evoked inflammation responses, and SHP2's negative regulation of SOX9 could be curtailed by genetic or chemical SHP2 inhibition, suggesting that manipulating SHP2 signaling has translational potential for diseases of cartilage dyshomeostasis.
Asunto(s)
Cartílago Articular , Condrocitos , Osteoartritis , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Factor de Transcripción SOX9 , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Animales , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Condrocitos/metabolismo , Condrocitos/patología , Ratones , Cartílago Articular/metabolismo , Cartílago Articular/patología , Osteoartritis/metabolismo , Osteoartritis/patología , Proliferación Celular , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Noqueados , MasculinoRESUMEN
BACKGROUND: RNA m5C methylation has been extensively implicated in the occurrence and development of tumors. As the main methyltransferase, NSUN2 plays a crucial regulatory role across diverse tumor types. However, the precise impact of NSUN2-mediated m5C modification on breast cancer (BC) remains unclear. Our study aims to elucidate the molecular mechanism underlying how NSUN2 regulates the target gene HGH1 (also known as FAM203) through m5C modification, thereby promoting BC progression. Additionally, this study targets at preliminarily clarifying the biological roles of NSUN2 and HGH1 in BC. METHODS: Tumor and adjacent tissues from 5 BC patients were collected, and the m5C modification target HGH1 in BC was screened through RNA sequencing (RNA-seq) and single-base resolution m5C methylation sequencing (RNA-BisSeq). Methylation RNA immunoprecipitation-qPCR (MeRIP-qPCR) and RNA-binding protein immunoprecipitation-qPCR (RIP-qPCR) confirmed that the methylation molecules NSUN2 and YBX1 specifically recognized and bound to HGH1 through m5C modification. In addition, proteomics, co-immunoprecipitation (co-IP), and Ribosome sequencing (Ribo-Seq) were used to explore the biological role of HGH1 in BC. RESULTS: As the main m5C methylation molecule, NSUN2 is abnormally overexpressed in BC and increases the overall level of RNA m5C. Knocking down NSUN2 can inhibit BC progression in vitro or in vivo. Combined RNA-seq and RNA-BisSeq analysis identified HGH1 as a potential target of abnormal m5C modifications. We clarified the mechanism by which NSUN2 regulates HGH1 expression through m5C modification, a process that involves interactions with the YBX1 protein, which collectively impacts mRNA stability and protein synthesis. Furthermore, this study is the first to reveal the binding interaction between HGH1 and the translation elongation factor EEF2, providing a comprehensive understanding of its ability to regulate transcript translation efficiency and protein synthesis in BC cells. CONCLUSIONS: This study preliminarily clarifies the regulatory role of the NSUN2-YBX1-m5C-HGH1 axis from post-transcriptional modification to protein translation, revealing the key role of abnormal RNA m5C modification in BC and suggesting that HGH1 may be a new epigenetic biomarker and potential therapeutic target for BC.
Asunto(s)
Neoplasias de la Mama , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Metiltransferasas , Estabilidad del ARN , Proteína 1 de Unión a la Caja Y , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismoRESUMEN
Bismuth(III)-based complexes have garnered increasing attention in fluorescence sensing due to their environmentally friendly and sustainable characteristics. A Bismuth(III) coordination polymer (CP),1-Cl based on a naphthalene diimides(NDI)-pyridinium is synthesized by an in situ reaction method. Notable for its sensitivity to visible light, 1-Cl shows excellent photochromic properties, and the integration of NDI and pyridinium in one ligand makes photogenerated radicals more stable. Structural analysis and theoretical calculations are employed to investigate the potential pathway of photoinduced electron transfer (ET) during the photochromic process. Notably, in aqueous solutions, 1-Cl displays an extraordinary fluorescence enhancement response to bromide ion (Br-), resulting in a distinct transition from yellow to orange in color. The potential mechanism of fluorescence sensing has been revealed through single-crystal X-ray diffraction analysis. This insight highlights a continuous substitution process where the Cl- ions are successively replaced by Br- ions. Consequently, a single-crystal-to-single-crystal transformation (SCSC) occurs, yielding the intermediate species, 1-Cl-Br, which ultimately transforms into the final product, 1-Br. Finally, the photochromic film is successfully prepared and applied to practical applications such as ink-free printing, information anti-counterfeiting, and the visual detection of Br- ions. This work combines photochromism with fluorescence sensing, broadening the research field and practical application of photochromic materials.
RESUMEN
The Novel Coronavirus 2019 (COVID-19) is a global pandemic which has a devastating impact. Due to its quick transmission, a prominent challenge in confronting this pandemic is the rapid diagnosis. Currently, the commonly-used diagnosis is the specific molecular tests aided with the medical imaging modalities such as chest X-ray (CXR). However, with the large demand, the diagnoses of CXR are time-consuming and laborious. Deep learning is promising for automatically diagnosing COVID-19 to ease the burden on medical systems. At present, the most applied neural networks are large, which hardly satisfy the rapid yet inexpensive requirements of COVID-19 detection. To reduce huge computation and memory demands, in this paper, we focus on implementing lightweight networks for COVID-19 detection in CXR. Concretely, we first augment data based on clinical visual features of CXR from expertise. Then, according to the fact that all the input data are CXR, we design a targeted four-layer network with either 11 × 11 or 3 × 3 kernels to recognize regional features and detail features. A pruning criterion based on the weights importance is also proposed to further prune the network. Experiments on a public COVID-19 dataset validate the effectiveness and efficiency of the proposed method.
Asunto(s)
COVID-19 , Humanos , Rayos X , COVID-19/diagnóstico por imagen , Redes Neurales de la Computación , Pandemias , SARS-CoV-2RESUMEN
Donor-acceptor (D-A) conjugated polymer (CP) featuring high charge mobility and widely tunable energy bands have shown promising prospects in photocatalysis. In this work, a library of ternary D-A CPs (22 polymers) based on benzothiadiazole, bithiophene, and fluorene derivatives (i.e., fluorene [Fl], 9,9-dihexylfluorene [HF], and 9,9'-spirobifluorene [SF]) with and without alkyl side chains, and with 3D geometry are designed and synthesized via atom-economical direct C-H arylation polymerization to explore the synergetic effects of stereochemistry, D/A ratio, and alkyl chains on the properties and photocatalytic performances, which reveal that 1) the cross-shaped 3D spirobifluorene (SF) building block shows the highest hydrogen evolution rates (HER) owing to the sufficient photocatalytic active sites exposed, 2) the alkyl-free linear polymer (FlBtBT0.05 ) exhibit the highest photocatalytic pollutant degradation performance owing to its superior charge separation, and 3) the alkyl side chains are redundances that will exert detrimental effects on the aqueous photocatalysis owing to their insulating and hydrophobic property. The structure-property-performance correlation results obtained will provide a desirable guideline for the rational design of CP-based photocatalysts.
Asunto(s)
Contaminantes Ambientales , Fluorenos , Hidrógeno , Polimerizacion , PolímerosRESUMEN
On the basis of variable-temperature single-crystal X-ray diffraction, rotational energy barrier analysis, variable-temperature/frequency dielectric response, and molecular dynamics simulations, here we report a new crystalline supramolecular rotor (CH3NH3)(18-crown-6)[CuCl3], in which the (H3C-NH3)+ ion functions as a smallest dual-wheel rotator showing bisected rotation dynamics, while the host 18-crown-6 macrocycle behaves as a stator that is not strictly stationary. This study also provides a helpful insight into the dynamics of ubiquitous -CH3/-NH3 groups confined in organic or organic-inorganic hybrid solids.
RESUMEN
Palmitoyl-protein thioesterase 1 (PPT1) is a lysosomal depalmitoylation enzyme that mediates protein posttranslational modifications. Loss-of-function mutation of PPT1 causes a failure of the lysosomal degradation of palmitoylated proteins and results in a congenital disease characterized by progressive neuronal degeneration referred to as infantile neuronal ceroid lipofuscinosis (INCL). A mouse knock-in model of PPT1 (PPT1-KI) was established by introducing the R151X mutation into exon 5 of the PPT1 gene, which exhibited INCL-like pathological lesions. We previously reported that hippocampal γ oscillations were impaired in PPT1 mice. Hippocampal γ oscillations can be enhanced by selective activation of the dopamine D4 receptor (DR4), a dopamine D2-like receptor. In this study, we investigated the changes in DR expression and the effects of dopamine and various DR agonists on neural network activity, cognition and motor function in PPT1KI mice. Cognition and motor defects were evaluated via Y-maze, novel object recognition and rotarod tests. Extracellular field potentials were elicited in hippocampal slices, and neuronal network oscillations in the gamma frequency band (γ oscillations) were induced by perfusion with kainic acid (200 nM). PPT1KI mice displayed progressive impairments in γ oscillations and hippocampus-related memory, as well as abnormal expression profiles of dopamine receptors with preserved expression of DR1 and 3, increased membrane expression of DR4 and decreased DR2 levels. The immunocytochemistry analysis revealed the colocalization of PPT1 with DR4 or DR2 in the soma and large dendrites of both WT and PPT1KI mice. Immunoprecipitation confirmed the interaction between PPT1 and DR4 or DR2. The impaired γ oscillations and cognitive functions were largely restored by the application of exogenous dopamine, the selective DR2 agonist quinpirole or the DR4 agonist A412997. Furthermore, the administration of A412997 (0.5 mg/kg, i.p.) significantly upregulated the activity of CaMKII in the hippocampus of 5-month-old PPT1KI mice. Collectively, these results suggest that the activation of D2-like dopamine receptors improves cognition and network activity in PPT1KI mice and that specific DR subunits may be potential targets for the intervention of neurodegenerative disorders, such as INCL.
RESUMEN
Discharge or leaching of plastic additives, which are an essential part of the plastic production process, can lead to environmental pollution with serious impacts on human and ecosystem health. Recently, the emission of plastic additives is increasing dramatically, but its pollution condition has not received enough attention. Meanwhile, the effective treatment strategy of plastic additive pollution is lack of systematic introduction. Therefore, it is crucial to analyze the harm and pollution status of plastic additives and explore effective pollution control strategies. This paper reviews the latest research progress on additives in plastics, describes the effects of their migration into packaged products and leaching into the environment, presents the hazards of four major classes of plastic additives (i.e., plasticizers, flame retardants, stabilizers, and antimicrobials), summarizes the existing abiotic/biotic strategies for accelerated the remediation of additives, and finally provides perspectives on future research on the removal of plastic additives. To the best of our knowledge, this is the first review that systematically analyzes strategies for the treatment of plastic additives. The study of these strategies could (i) provide feasible, cost-effective abiotic method for the removal of plastic additives, (ii) further enrich the current knowledge on plastic additive bioremediation, and (iii) present application and future development of plants, invertebrates and machine learning in plastic additive remediation.
RESUMEN
This study represents the first analysis of the bacterial community in chickens affected by swollen head syndrome, utilizing 16S rRNA gene sequencing. Samples were obtained from clinical laying chickens and were examined for the presence of Avibacterium paragallinarum (APG) and Ornithobacterium rhinotracheale (ORT) using conventional polymerase chain reaction (PCR). From the samples, five APG-positive (APG) and APG-negative (N-APG) samples were chosen, along with five specific pathogen-free chickens, for 16S rRNA gene sequencing. Results showed that APG and ORT were widely detected in the chicken samples with swollen head syndrome (SHS, 9/10), while APG was detected in all five specific pathogen-free (SPF) samples. In contrast, conventional PCR sensitivity was found to be inadequate for diagnosis, with only 35.7% (5/14) and 11.1% (1/9) sensitivity for APG and ORT, respectively, based on 16S rRNA gene sequencing data. Furthermore, 16S rRNA gene sequencing was able to quantify the bacteria in the samples, revealing that the relative abundance of APG in the APG group ranged from 2.7 to 81.3%, while the relative abundance of APG in the N-APG group ranged from 0.1 to 21.0%. Notably, a low level of APG was also detected in all 5 SPF samples. The study also identified a significant number of animal and human common bacterial pathogens, including but not limited to Gallibacterium anatis, Riemerella columbina, Enterococcus cecorum, Mycoplasma synoviae, Helicobacter hepaticus, and Staphylococcus lentus. In conclusion, 16S rRNA gene sequencing is a valuable tool for bacterial pathogen diagnosis and the discovery of novel bacterial pathogens, while conventional PCR is not reliable for diagnosis.
Asunto(s)
Pollos , Reacción en Cadena de la Polimerasa , Enfermedades de las Aves de Corral , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Animales , Pollos/microbiología , Reacción en Cadena de la Polimerasa/métodos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/diagnóstico , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Análisis de Secuencia de ADN , FilogeniaRESUMEN
Neuropathic pain is a common pain syndrome, which seriously affects the quality of life of patients. The mechanism of neuropathic pain is complex. Peripheral tissue injury can trigger peripheral sensitization; however, what really plays a key role is the sensitization of the central nervous system. Central sensitization is a key factor in the perception of chronic pain. Central sensitization refers to the increased sensitivity of the central nervous system to pain treatment, which is related to the change of the functional connection mode of the neural network. The current study aims to reveal the basic molecular mechanisms of central sensitization, including the involvement of P2 purine X4 receptor and brain-derived neurotrophic factor. In terms of treatment, although there are drugs and physical therapy, the accuracy of targeting is limited and the efficacy needs to be further improved. Future therapeutic strategies may involve the development of new drugs designed to specifically inhibit the central sensitization process. This article focuses on the effector molecules involved in central sensitization, aiming to elucidate the pathogenesis of neuropathic pain and provide a basis for the development of more effective treatment models.
Asunto(s)
Sensibilización del Sistema Nervioso Central , Neuralgia , Neuralgia/terapia , Neuralgia/fisiopatología , Humanos , Sensibilización del Sistema Nervioso Central/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismoRESUMEN
Flexible sensors have gained popularity in recent years. This study proposes a novel structure of a resistive four-channel tactile sensor capable of distinguishing the magnitude and direction of normal forces acting on its sensing surface. The sensor uses EcoflexTM00-30 as the substrate and EGaIn alloy as the conductive filler, featuring four mutually perpendicular and curved channels to enhance the sensor's dynamic responsiveness. Experiments and simulations show that the sensor has a large dynamic range (31.25-100 mΩ), high precision (deviation of repeated pressing below 0.1%), linearity (R2 above 0.97), fast response/recovery time (0.2 s/0.15 s), and robust stability (with fluctuations below 0.9%). This work uses an underactuated robotic hand equipped with a four-channel tactile sensor to grasp various objects. The sensor data collected effectively predicts the shapes of the objects grasped. Furthermore, the four-channel tactile sensor proposed in this work may be employed in smart wearables, medical diagnostics, and other industries.
RESUMEN
Environmental high temperature poses a significant threat to human health, however, limited information is available for understanding the relationship between the hot weather and infertility. This study aims to assess the adverse effect of the hot weather to early embryonic cells. Our results indicated that environmental high temperature exposure could cause the decline of early embryo quality and implantation ability. In detail, it led to early embryonic development retardation, embryo degeneration rate increased, the rate of blastocyst and hatching decreased, and reduced the number of implants. And the finding also the impairment of environmental high temperature on early embryonic cells may be due to oxidative damage of DNA caused by ROS, while BER repair ability is decreased, failing to repair oxidative damage of DNA in time, resulting in a large number of early embryonic apoptosis. The work underscored that pregnant women should stay away from high-temperature environments.
RESUMEN
Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.
Asunto(s)
Fibras de la Dieta , Xilanos , Xilanos/química , Fibras de la Dieta/análisisRESUMEN
This study aimed to systematically evaluate the impact of evidence-based nursing (EBN) on perioperative wound infections and postoperative complications in patients undergoing surgery for liver hepatocellular carcinoma (LIHC). Randomised controlled trials (RCTs) on the application of EBN on patients receiving LIHC surgery were searched in PubMed, Web of Science, Cochrane Library, Embase, Wanfang, China Biomedical Literature Database and China National Knowledge Infrastructure from the inception of each database to September 2023. Studies were screened and evaluated by two investigators based on inclusion and exclusion criteria, and data were extracted from the final included literature. RevMan 4.0 was used for data analysis. Overall, 15 RCTs involving 1374 patients with LIHC were included, with 687 in the EBN group and 687 in the conventional care group. The analysis revealed that the incidence of wound infections (odds ratio [OR] = 0.32, 95% confidence interval [CI]: 0.18-0.56, p < 0.001) and postoperative complications (OR = 0.22, 95% CI: 0.15-0.31, p < 0.001) was significantly lower in the EBN group than in the conventional care group. The available evidence suggests that nursing strategies for EBN applied in the perioperative period in patients with LIHC receiving surgery can effectively reduce the incidence of wound infections and postoperative complications and promote postoperative recovery.
Asunto(s)
Enfermería Basada en la Evidencia , Neoplasias Hepáticas , Humanos , Infección de la Herida Quirúrgica/etiología , Neoplasias Hepáticas/cirugía , Abdomen , ChinaRESUMEN
The complex air pollution driven by both Ozone (O3) and fine particulate matter (PM2.5) significantly influences the air quality in the Sichuan Basin (SCB). Understanding the O3 formation during autumn and winter is necessary to understand the atmospheric oxidative capacity. Therefore, continuous in-site field observations were carried out during the late summer, early autumn and winter of 2020 in a rural area of Chongqing. The total volatile organic compounds (VOCs) concentration reported by a Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) were 13.66 ± 9.75 ppb, 5.50 ± 2.64 ppb, and 9.41 ± 5.11 ppb in late summer, early autumn and winter, respectively. The anthropogenic VOCs (AVOCs) and biogenic VOCs (BVOCs) were 8.48 ± 7.92 ppb and 5.18 ± 2.99 ppb in late summer, 3.31 ± 1.89 ppb and 2.19 ± 0.93 ppb in autumn, and 6.22 ± 3.99 ppb and 3.20 ± 1.27 ppb in winter. A zero-dimensional atmospheric box model was employed to investigate the sensitivity of O3-precursors by relative incremental reactivity (RIR). The RIR values of AVOCs, BVOCs, carbon monoxide (CO), and nitrogen oxides (NOx) were 0.31, 0.71, 0.09, and -0.36 for late summer, 0.24, 0.59, 0.22, and -0.38 for early autumn, and 0.30, 0.64, 0.33 and -0.70 for winter, and the results showed that the O3 formation of sampling area was in the VOC-limited region, and O3 was most sensitive to BVOCs (with highest RIR values, > 0.6). This study can be helpful in understanding O3 formation and interpreting the secondary formation of aerosols in the winter.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/química , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , China , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodosRESUMEN
This study explored the effect of Tianma Gouteng Decoction on oxidative stress induced by angiotensin â ¡(Angâ ¡) in vascular smooth muscle cell(VSMC) and its molecular mechanism. Primary rat VSMC were cultured using tissue block method, and VSMC were identified by α-actin immunofluorescence staining. Angâ ¡ at a concentration of 1×10~(-6) mol·L~(-1) was used as the stimulating factor, and Sprague Dawley(SD) rats were orally administered with Tianma Gouteng Decoction to prepare drug serum. Rat VSMC were divided into normal group, model group, Chinese medicine group, and inhibitor(3-methyladenine, 3-MA) group. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation activity. Bromodeoxyuridine(BrdU) flow cytometry was used to detect cell cycle. Transwell assay was used to detect cell migration ability. Enzyme-linked immunosorbent assay(ELISA) was used to detect the activity of superoxide dismutase(SOD), catalase(CAT), and malondialdehyde(MDA) in VSMC. The intracellular reactive oxygen species(ROS) fluorescence intensity was detected using DCFH-DA fluorescent probe. Western blot was used to detect the expression of PTEN-induced putative kinase 1(PINK1), Parkin, p62, and microtubule-associated protein 1A/1B-light chain 3(LC3-â ¡) proteins in VSMC. The results showed that Tianma Gouteng Decoction-containing serum at a concentration of 8% could significantly inhibit VSMC growth after 48 hours of intervention. Compared with the normal group, the model group showed significantly increased cell proliferation activity and migration, significantly decreased levels of SOD and CAT, significantly increased levels of MDA, significantly enhanced ROS fluorescence intensity, significantly decreased expression of PINK1, Parkin, and LC3-â ¡ proteins, and significantly increased expression of p62 protein. Compared with the model group, the Chinese medicine group showed significantly reduced cell proliferation activity and migration, significantly increased levels of SOD and CAT, significantly decreased levels of MDA, significantly weakened ROS fluorescence intensity, significantly increased expression of PINK1, Parkin, and LC3-â ¡ proteins, and significantly decreased expression of p62 protein. Compared with the Chinese medicine group, the addition of the mitochondrial autophagy inhibitor 3-MA could block the intervention of Tianma Gouteng Decoction-containing serum on VSMC proliferation, migration, mitochondrial autophagy, and oxidative stress levels, with statistically significant differences. In summary, Tianma Gouteng Decoction has good antioxidant activity and can inhibit cell proliferation and migration. Its mechanism of action may be related to the activation of the mitochondrial autophagy PINK1/Parkin signaling pathway.