Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 263: 115302, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506440

RESUMEN

A novel method for simultaneous separation and detection of the racemates and the enantiomers of common chiral antidepressants in wastewater matrix was developed by online heart-cutting two-dimensional liquid chromatography (2D-LC) coupled to solid-phase extraction (SPE). Screening of chiral stationary phases (CSPs) and chromatographic conditions was investigated for complete enantioseparation to be compatible with RP-HPLC in 1st D-LC. Using methanol-0.1 % (v/v) ammonia solution as mobile phase, a 2D-LC system was configured by reversed mode with a combination of C18 column and the serially CPS columns as 2D-LC stationary phases respectively. The target analytes could achieve satisfactory transformation between 2D-LCs with transfer rate of 90.57-98.58 %. By means of freeze-drying and SPE, three antidepressants in wastewater were greatly preconcentrated under the optimized conditions, improving the method performance. The racemates and the enantiomers of mirtazapine, bupropion and fluoxetine exhibited good linearity in the range of 0.10-30.00 ng/mL (R2≥0.9986), and LODs and LOQs ranged in 0.0183-0.0549 ng/mL and 0.0661-0.1831 ng/mL, respectively. By this way, the method was successfully applied to simultaneous determination of the racemates and the enantiomers of mirtazapine, bupropion and fluoxetine in wastewater samples. Among them, three samples contained bupropion at level of 0.401-0.822 ng/mL, and mirtazapine at level of 0.328 and fluoxetine at level of 0.381 ng/mL were detected respectively in the other two samples. The enantiomers were at level of 0.140-0.189 ng/mL for mirtazapine, 0.182-0.419 ng/mL for bupropion and 0.179-0.204 ng/mL for fluoxetine, respectively. The proposed method providing an efficient approach to monitoring chiral drugs and their enantiomers in wastewater, facilitating to pollution assessment of chiral drugs in the environment and regional survey of illicit abuse in drug control.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Fluoxetina/análisis , Bupropión , Mirtazapina/análisis , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Antidepresivos , Cromatografía Líquida de Alta Presión/métodos , Estereoisomerismo
2.
Bioorg Med Chem ; 60: 116704, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35286953

RESUMEN

Glioma, as one of the most common primary intracranial tumors, is in an urgent need for specific targeting agents. Multi-branched RGD ligand is a promising alternative for liposome functionalization which combines the benefits of high affinity with αvß3 receptors and proper branching structure in response to the receptor clustering. Herein, we designed and synthesized single branched, double branched and triple branched RGD ligand (1RGD-Chol, 2RGD-Chol and 3RGD-Chol) respectively, which were then modified on the liposomes to prepare six different kinds of liposomes (including 1RGD-Lip, 2RGD-Lip, 3RGD-Lip, 2 × 1RGD-Lip, 3 × 1RGD-Lip and unmodified Lip). Subsequently, a series of assays were conducted. The results exhibited that the liposome decorated with 3RGD-Chol ligand possessed superior cellular internalization ability in C6 cells and bEnd.3 cells, suggesting the strongest ability of 3RGD-Lip to target the blood-brain barrier (BBB) and glioma cells. Besides, both the cytotoxicity and pro-apoptotic assays revealed that PTX-3RGD-Lip had the strongest ability to inhibit the survival of C6 cells. Moreover, the enrichment of liposomes at tumor site was 3RGD-Lip > 3 × 1RGD-Lip ≈ 2RGD-Lip ≈ 2 × 1RGD-Lip > 1RGD-Lip > Lip according to the in vivo imaging of C6-bearing mice, which was consistent with the result of in vitro targeting experiments. To sum up, the targeting efficiency of liposomes can be strongly promoted by improving the amount of targeting molecules, whereas the branching structure and spatial distance of RGD residues also accounted for the affinity between liposomes and αvß3 receptors. Collectively, PTX-3RGD-Lip would be a prospective strategy in glioma treatment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Glioma/tratamiento farmacológico , Glioma/patología , Ligandos , Liposomas/química , Ratones , Oligopéptidos/química , Estudios Prospectivos
3.
Chemistry ; 27(53): 13346-13351, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34350649

RESUMEN

A transition-metal-catalyzed C-H activation cascade strategy to rapidly construct diverse quinazolinone derivatives in a one-pot manner is reported. The catalysts play an important role in the different transformations. Additionally, the procedure is scalable, proceeds with high efficiency and good chemo-/regio-selectivity, and tolerates a range of functional groups.


Asunto(s)
Ciclopropanos , Quinazolinonas , Catálisis
5.
Eur J Med Chem ; 230: 114093, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007860

RESUMEN

A type of pH-sensitive multi-targeted brain tumor site-specific liposomes (Lip-CTPP) co-modified with p-hydroxybenzoic acid (p-HA) and triphenylphosphonium (TPP) were designed and prepared to co-load doxorubicin (DOX) and lonidamine (LND). Lip-CTPP are promising potential carriers to exert the anti-glioma effect of DOX and LND collaboratively given the following features: 1) Lip-CTPP have a good pharmacokinetic behavior; 2) Lip-CTPP can cross the blood-brain barrier (BBB) and recognize tumor cells through the affinity of p-HA and dopamine/sigma receptors; 3) Lip-CTPP are highly positive charged once the acid-sensitive amide bonds are cleaved in endo/lysosomes to expose TPP and protonate amine groups; 4) the positive charged Lip-CTPP escape from endo/lysosomes and accumulate in mitochondria through electrostatic adsorption; 5) DOX and LND are released and synergistically increase anti-tumor efficacy. Our in vitro and in vivo results confirmed that Lip-CTPP could greatly elevate the inhibition rate of tumor cell proliferation, migration and invasion, promote apoptosis and necrosis, and interfere with mitochondrial function. In addition, Lip-CTPP could significantly prolong the survival time of glioma bearing mice, narrow the tumor region and inhibit the infiltration and metastasis capability of glioma cells. Collectively, Lip-CTPP are promising nano formulations to enhance the synergistic effect of DOX and LND in glioma treatment.


Asunto(s)
Glioma , Liposomas , Animales , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Hidroxibenzoatos , Indazoles , Liposomas/uso terapéutico , Ratones
6.
Eur J Med Chem ; 235: 114281, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344903

RESUMEN

To synergistically treat glioma with a combination chemotherapy, we design and prepare novel cascade-targeted liposomes (Lip-TPGS) using glucose and triphenylphosphonium (TPP) as targeting moieties, which could intelligently deliver redox-sensitive doxorubicin (DOX) prodrugs (SDOX) and chemotherapeutic sensitizer lonidamine (LND). The pH-responsive ligand Chol-TPG modified by PEGylated glucose can overcome the blood-brain barrier and reach tumor cells. Combined with the modification of mitochondria targeting ligand (Chol-TPP), Lip-TPGS are endowed with pH-responsive charge regulation function and multi-stage targeting abilities. After triggered by the excessive glutathione in tumor cells, Lip-TPGS could sufficiently release the parent drugs DOX, which would significantly reduce side effects without compromising anti-glioma efficacy. Therefore, Lip-TPGS possess these characteristics: good pharmacokinetic behavior, superior brain targeting ability, specific tumor recognition and internalization capability, and strong endo/lysosome escaping and mitochondria targeting potential. Furthermore, Lip-TPGS exhibit significant advantages on anti-glioma by inhibiting proliferation, promoting apoptosis, inducing mitochondria dysfunction, inhibiting migration and invasion, prolonging the survival time, narrowing tumor areas, limiting lung metastasis, and reducing toxicity to normal organs. In summary, Lip-TPGS, with cascade targeting abilities from tissue/cell to organelle levels and highly controlled drug release properties, would become a promising drug delivery system for glioma treatment.


Asunto(s)
Glioma , Profármacos , Línea Celular Tumoral , Doxorrubicina , Glioma/tratamiento farmacológico , Glucosa , Humanos , Concentración de Iones de Hidrógeno , Indazoles , Ligandos , Liposomas/uso terapéutico , Oxidación-Reducción , Profármacos/farmacología , Profármacos/uso terapéutico
7.
Org Lett ; 23(17): 6831-6835, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34399575

RESUMEN

Three-component couplings have been realized for efficiently constructing various nitrogen-containing skeletons via C-H activation, where difluorocyclopropenes have been first identified as coupling partners. Many substrates including sp2 and sp3 C-H substrates were well tolerated, furnishing the corresponding products in good yields. Furthermore, a catalyst-dependent reaction was also developed, enabling divergent construction of two different frameworks. The application value of these reactions was demonstrated in gram-scale experiments with as little as 1 mol % catalyst.

8.
Org Lett ; 23(5): 1548-1553, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33606549

RESUMEN

Inspired by the diversity created by nature, organic chemists have been using a divergent strategy to improve the synthetic efficiency of diverse molecules. Transition-metal-catalyzed C-H functionalization has become one of the most straightforward, powerful, and atom-economical methods to construct complex scaffolds. However, C-H activation initiated divergent transformation to prepare diverse molecules is still limited. To address this challenge, we herein developed Rh(III)-catalyzed C-H olefination/annulation reaction cascades to divergently construct diverse polyheterocycles by tuning manipulations of directing groups (DGs). Up to 9 distinct scaffolds were creatively synthesized under simple conditions with good functional group tolerance, chemo-, and regioselectivity. Such a versatile strategy and its extension may encourage researchers to discover more promising manipulations of DGs for transition-metal-catalyzed C-H bond activation, making diverse available targets and materials that would have been previously out of range.

9.
Chem Commun (Camb) ; 56(10): 1585-1588, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-31934691

RESUMEN

We here report a condition-controlled divergent synthesis strategy of chalcones, quinolones and indoles, which was achieved via a C-H activation reaction of N-nitrosoanilines and cyclopropenones. Variations of Ag salts are observed to be crucial for divergently constructing the three distinct chemical scaffolds. A Rh(i)- and Rh(iii)-cocatalyzed decarbonylation/C-H activation/[3+2] annulation cascade reaction was developed for the synthesis of indoles. These methodologies are characterized by mild reaction conditions, high functional group tolerance, and amenability to gram-scale synthesis, providing a reference for future derivation of new chemical scaffolds by C-H activation.

10.
ChemSusChem ; 11(9): 1426-1431, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29516681

RESUMEN

An efficient procedure for the synthesis of thiophosphates is described. Without using any metallic catalyst or base, the direct sulfur-phosphorus coupling reaction of disulfides and dialkyl trimethylsilyl phosphite (DTSP) was carried out under solvent-free reaction conditions in moderate to excellent yields with good functional group compatibility. The reaction conditions represent an advance over established methods not only in omitting the need for expensive catalysts or solvents, but also in shortening the reaction time significantly.These transformations are easy to conduct and can be readily applied to gram-scale preparation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA