Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Idioma
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(3): 671-676, 2022 Jun.
Artículo en Zh | MEDLINE | ID: mdl-35680789

RESUMEN

OBJECTIVE: To investigate the effects of paclitaxel, quizartinib and their combination on proliferation, apoptosis and FLT3/STAT5 pathway of human leukemia cell line MV4-11 (FLT3-ITD+). METHODS: MV4-11 cells were treated with paclitaxel and quizartinib at different concentrations for 24 h, 48 h and 72 h, respectively, and then the two drugs were combined at 48 h to compare the inhibition of proliferation, the apoptosis rate was detected by flow cytometry, the expression of FLT3 and STAT5 mRNA was determined by fluorescence quantitative PCR, and the protein expression of FLT3, p-FLT3, STAT5 and p-STAT5 was determined by Western blot. RESULTS: Different combination groups of paclitaxel and quizartinib had synergistic inhibitory effect. The cell survival rate in the combination group was significantly lower than that in the single drug group (P<0.05). The cell apoptosis rate in the combination group was significantly higher than that in the single drug group (P<0.001). The expression of FLT3 mRNA in combination group was significantly higher than that in two single drugs (P<0.01). The expression of STAT5 mRNA in combination group was significantly higher than that in quizartinib group (P<0.001); increased compared with paclitaxel group, but there was no statistical significance. The expression level of p-FLT3、p-STAT5 protein in the combination group was significantly lower than that in the single drug group (P<0.05, P<0.05). CONCLUSION: Paclitaxel combined with quizartinib can synergistically inhibit the proliferation of MV4-11 cell line and promote the apoptosis of MV4-11 cell line by inhibiting the activity of FLT3/STAT5 pathway.


Asunto(s)
Leucemia Mieloide Aguda , Factor de Transcripción STAT5 , Apoptosis , Benzotiazoles , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Compuestos de Fenilurea , ARN Mensajero , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/farmacología , Transducción de Señal , Tirosina Quinasa 3 Similar a fms
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(3): 741-750, 2021 Jun.
Artículo en Zh | MEDLINE | ID: mdl-34105467

RESUMEN

OBJECTIVE: To analyze gene expression profile of T cell lymphoma Jurkat cell line treated with paclitaxel by computational biology based on next generation sequencing and to explore the possible molecular mechanism of paclitaxel resistance to T cell lymphoma at gene level. METHODS: IC50 of paclitaxel on Jurkat cell line was determined by CCK-8 assay. Gene expression profile of Jurkat cells treated with paclitaxel was acquired by next generation sequencing technology. Gene microarray data related to human T cell lymphoma were screened from Gene Expression Omnibus (GEO) database (including 720 cases of T cell lymphoma and 153 cases of normal tissues). Combined with the sequencing data, differential expression genes (DEGs) were intersected and screened. DAVID database was used for enrichment analysis of GO function and KEGG pathway to determine and visualize functional entries of DEGs, and protein-protein interactions network of DEGs was drawn. The levels of gene expression were detected and verified by RT-qPCR. RESULTS: CCK-8 results showed that the proliferation of Jurkat cells was inhibited by paclitaxel depended on the concentration apparently. Treated by paclitaxel for 48 h, P<0.05 and |log2(FC)|≥1 were used as filter criteria on the results of RNA Sequencing (RNA-Seq) and GeoChip, 351 DEGs were found from Jurkat cells, including 323 up-regulated genes and 28 down-regulated genes. The GO functional annotation and KEGG pathway enrichment analysis showed that the role of paclitaxel was mainly concentrated in protein heterodimerization activity, nucleosome assembly and transcriptional dysregulation in cancer, etc. The results of RT-qPCR were consistent with those of the sequencing analysis, which verified the reliability of this sequencing. CONCLUSION: Paclitaxel can affect the proliferation and apoptosis of T-cell lymphoma by up-regulating JUN gene, orphan nuclear receptor NR4A family genes and histone family genes.


Asunto(s)
Linfoma de Células T , Paclitaxel , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA