Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Sci ; 115(3): 859-870, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38287498

RESUMEN

There are approximately 250 million people chronically infected with hepatitis B virus (HBV) worldwide. Although HBV is often integrated into the host genome and promotes hepatocarcinogenesis, vulnerability of HBV integration in liver cancer cells has not been clarified. The aim of our study is to identify vulnerability factors for HBV-associated hepatocarcinoma. Loss-of-function screening was undertaken in HepG2 and HBV-integrated HepG2.2.15 cells expressing SpCas9 using a pooled genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) library. Genes whose guide RNA (gRNA) abundance significantly decreased in HepG2.2.15 cells but not in HepG2 cells were extracted using the MAGeCK algorithm. We identified four genes (BCL2L1, VPS37A, INSIG2, and CFLAR) that showed significant reductions of gRNA abundance and thus potentially involved in the vulnerability of HBV-integrated cancer cells. Among them, siRNA-mediated mRNA inhibition or CRISPR-mediated genetic deletion of INSIG2 significantly impaired cell proliferation in HepG2.2.15 cells but not in HepG2 cells. Its inhibitory effect was alleviated by cotransfection of siRNAs targeting HBV. INSIG2 inhibition suppressed the pathways related to cell cycle and DNA replication, downregulated cyclin-dependent kinase 2 (CDK2) levels, and delayed the G1 -to-S transition in HepG2.2.15 cells. CDK2 inhibitor suppressed cell cycle progression in HepG2.2.15 cells and INSIG2 inhibition did not suppress cell proliferation in the presence of CDK2 inhibitor. In conclusion, INSIG2 inhibition induced cell cycle arrest in HBV-integrated hepatoma cells in a CDK2-dependent manner, and thus INSIG2 might be a vulnerability factor for HBV-associated liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Carcinoma Hepatocelular/genética , ARN Guía de Sistemas CRISPR-Cas , Neoplasias Hepáticas/genética , Línea Celular , Células Hep G2 , ARN Interferente Pequeño/metabolismo , Replicación Viral/genética , Hepatitis B/genética , ADN Viral/genética , Proteínas de la Membrana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
Hepatology ; 77(2): 395-410, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995376

RESUMEN

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a deadly but poorly understood disease, and its treatment options are very limited. The aim of this study was to identify the molecular drivers of ICC and search for therapeutic targets. APPROACH AND RESULTS: We performed a Sleeping Beauty transposon-based in vivo insertional mutagenesis screen in liver-specific Pten -deficient mice and identified TNF receptor-related factor 3 ( Traf3 ) as the most significantly mutated gene in murine ICCs in a loss-of-function manner. Liver-specific Traf3 deletion caused marked cholangiocyte overgrowth and spontaneous development of ICC in Pten knockout and KrasG12D mutant mice. Hepatocyte-specific, but not cholangiocyte-specific, Traf3 -deficient and Pten -deficient mice recapitulated these phenotypes. Lineage tracing and single-cell RNA sequencing suggested that these ICCs were derived from hepatocytes through transdifferentiation. TRAF3 and PTEN inhibition induced a transdifferentiation-like phenotype of hepatocyte-lineage cells into proliferative cholangiocytes through NF-κB-inducing kinase (NIK) up-regulation in vitro. Intrahepatic NIK levels were elevated in liver-specific Traf3 -deficient and Pten -deficient mice, and NIK inhibition alleviated cholangiocyte overgrowth. In human ICCs, we identified an inverse correlation between TRAF3 and NIK expression, with low TRAF3 or high NIK expression associated with poor prognosis. Finally, we showed that NIK inhibition by a small molecule inhibitor or gene silencing suppressed the growth of multiple human ICC cells in vitro and ICC xenografts in vivo. CONCLUSIONS: TRAF3 inactivation promotes ICC development through NIK-mediated hepatocyte transdifferentiation. The oncogenic TRAF3-NIK axis may be a potential therapeutic target for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Ratones , Animales , Transducción de Señal/fisiología , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Transdiferenciación Celular , Hepatocitos/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , FN-kappa B/metabolismo , Quinasa de Factor Nuclear kappa B
3.
J Exp Clin Cancer Res ; 42(1): 262, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814340

RESUMEN

BACKGROUND: Pancreatitis is known to be an important risk factor for pancreatic ductal adenocarcinoma (PDAC). However, the exact molecular mechanisms of how inflammation promotes PDAC are still not fully understood. Regnase-1, an endoribonuclease, regulates immune responses by degrading mRNAs of inflammation-related genes. Herein, we investigated the role of Regnase-1 in PDAC. METHODS: Clinical significance of intratumor Regnase-1 expression was evaluated by immunohistochemistry in 39 surgically-resected PDAC patients. The functional role of Regnase-1 was investigated by pancreas-specific Regnase-1 knockout mice and Kras-mutant Regnase-1 knockout mice. The mechanistic studies with gene silencing, RNA immunoprecipitation sequencing (RIP-seq) and immune cell reconstitution were performed in human/mouse PDAC cell lines and a syngeneic orthotopic tumor transplantation model of KrasG12D-mutant and Trp53-deficient PDAC cells. RESULTS: Regnase-1 expression was negatively correlated with the clinical outcomes and an independent predictor of poor relapse-free and overall survival in PDAC patients. Pancreas-specific Regnase-1 deletion in mice promoteed pancreatic cancer with PMN-MDSC infiltration and shortened their survival. A syngeneic orthotopic PDAC model exhibited that Regnase-1 downregulation accelerated tumor progression via recruitment of intratumor CD11b+ MDSCs. Mechanistically, Regnase-1 directly negatively regulated a variety of chemokines/cytokines important for MDSC recruitment and activation, including CXCL1, CXCL2, CSF2, and TGFß, in pancreatic cancer cells. We subsequently showed that IL-1ß-mediated Regnase-1 downregulation recruited MDSCs to tumor sites and promoted pancreatic cancer progression via mitigation of cytotoxic T lympohocytes-mediated antitumor immunity. CONCLUSIONS: IL-1b-mediated Regnase-1 downregulation induces MDSCs and promotes pancreatic cancer through the evasion of anticancer immunity.


Asunto(s)
Carcinoma Ductal Pancreático , Células Supresoras de Origen Mieloide , Neoplasias Pancreáticas , Ribonucleasas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Regulación hacia Abajo , Inflamación/metabolismo , Ratones Noqueados , Neoplasias Pancreáticas/patología , Ribonucleasas/genética , Neoplasias Pancreáticas
4.
Hepatol Commun ; 6(9): 2474-2487, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35608131

RESUMEN

Current anti-hepatitis B virus (HBV) therapies have little effect on covalently closed circular DNA (cccDNA) and fail to eliminate HBV. The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been reported to directly target cccDNA and exert antiviral effects. In this study, we hypothesized that the inhibition of the DNA repair machinery, which is important for the repair of CRISPR-induced double-strand breaks, may enhance the effect of CRISPR targeting cccDNA, and we investigated the antiviral effect of potential combination therapy. The antiviral effect of CRISPR targeting cccDNA (HBV-CRISPR) was evaluated in HBV-susceptible HepG2-hNTCP-C4 cells expressing Cas9 (HepG2-hNTCP-C4-iCas9) or primary human hepatocytes (PHHs) expressing Cas9. Following HBV infection, HBV-CRISPR reduced cccDNA levels, accompanied by decreases in pregenomic RNA (pgRNA) levels and supernatant HBV DNA, hepatitis B surface antigen and hepatitis B e antigen levels in HepG2-hNTCP-C4-iCas9 cells, and PHHs. HBV-CRISPR induced indel formation in cccDNA and up-regulated poly(adenosine diphosphate ribose) polymerase (PARP) activity in HBV-infected HepG2-hNTCP-C4-iCas9 cells. The suppression of PARP2-Histone PARylation factor 1 (HPF1) (involved in the initial step of DNA repair) with small interfering RNA (siRNA) targeting either PARP2 or HPF1 increased the reduction in pgRNA and cccDNA by HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells. The suppression of DNA Ligase 4 (LIG4) (essential for nonhomologous end joining [NHEJ]) but not breast cancer susceptibility gene (BRCA) (essential for homologous recombination) enhanced the antiviral effect of HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells. Finally, the clinically available PARP inhibitor olaparib increased the reductions in pgRNA and cccDNA levels induced by HBV-CRISPR in HBV-infected HepG2-hNTCP-C4-iCas9 cells and PHHs. Conclusion: The suppression of the NHEJ-mediated DNA repair machinery enhances the effect of CRISPR targeting cccDNA. The combination of CRISPR and olaparib may represent a therapy for HBV elimination.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Viral , Virus de la Hepatitis B , Antivirales/farmacología , Reparación del ADN/genética , ADN Circular/genética , Hepatitis B/genética , Hepatitis B/terapia , Virus de la Hepatitis B/genética , Humanos , Proteínas Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA