Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 627(8003): 313-320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480964

RESUMEN

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Asunto(s)
Diseño de Equipo , Piel , Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Humanos , Silicio , Nanotubos de Carbono , Tacto
2.
Nature ; 603(7902): 624-630, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322250

RESUMEN

Next-generation light-emitting displays on skin should be soft, stretchable and bright1-7. Previously reported stretchable light-emitting devices were mostly based on inorganic nanomaterials, such as light-emitting capacitors, quantum dots or perovskites6-11. They either require high operating voltage or have limited stretchability and brightness, resolution or robustness under strain. On the other hand, intrinsically stretchable polymer materials hold the promise of good strain tolerance12,13. However, realizing high brightness remains a grand challenge for intrinsically stretchable light-emitting diodes. Here we report a material design strategy and fabrication processes to achieve stretchable all-polymer-based light-emitting diodes with high brightness (about 7,450 candela per square metre), current efficiency (about 5.3 candela per ampere) and stretchability (about 100 per cent strain). We fabricate stretchable all-polymer light-emitting diodes coloured red, green and blue, achieving both on-skin wireless powering and real-time displaying of pulse signals. This work signifies a considerable advancement towards high-performance stretchable displays.

4.
Small ; 20(43): e2403651, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38934537

RESUMEN

Conjugated polymer sorting is recognized as an efficient and scalable method for the selective extraction of semiconducting single-walled carbon nanotubes (s-SWCNTs). However, this process typically requires the use of nonpolar and aromatic solvents as the dispersion medium, which are petroleum-based and carry significant production hazards. Moreover, there is still potential for improving the efficiency of batch purification. Here, this study presents fluorene-based conjugated polymer that integrates diamines containing ethylene glycol chains (ODA) as linkers within the main chain, to effectively extract s-SWCNTs in bio-renewable solvents. The introduction of ODA segments enhances the solubility in bio-renewable solvents, facilitating effective wrapping of s-SWCNTs in polar environments. Additionally, the ODA within the main chain enhances affinity to s-SWCNTs, thereby contributing to increased yields and purity. The polymer achieves a high sorting yield of 55% and a purity of 99.6% in dispersion of s-SWCNTs in 2-Methyltetrahydrofuran. Thin-film transistor arrays fabricated with sorted s-SWCNTs solution through slot-die coating exhibit average charge carrier mobilities of 20-23 cm2 V⁻¹ s⁻¹ and high on/off current ratios exceeding 105 together with high spatial uniformity. This study highlights the viability of bio-renewable solvents in the sorting process, paving the way for the eco-friendly approach to the purification of SWCNTs.

5.
Macromol Rapid Commun ; 40(12): e1900115, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31021501

RESUMEN

Donor-acceptor crosslinked poly[poly(ethylene glycol) methyl ether-methacrylate]-block-poly[1,1'-bis(2-ethylpentyl)-6-methyl-6'-(5-methyl-3-vinylthiophen-2-yl)-[3,3'-biindoline]-2,2'-dione] (poly(PEGMA)m -b-poly(VTIID)n ) nanoparticles with various vinylthiophene donor/isoindigo acceptor ratios are synthesized successfully. The prepared nanoparticles have uniform sizes and well-defined core-shell nanostructures. The intramolecular charge transfer is effectively enhanced due to the incorporation of acceptor groups after the crosslinking reaction. A transistor memory device is assembled using the synthesized polymer and has nonvolatile flash-type memory and amphiphilic trapping behavior. The optimized devices exhibit a significant memory window of approximately 38 V, a retention ability of over 104 s, and an endurance of at least 100 cycles. This study examines multiple applications of crosslinked core-shell nanoparticles, which demonstrates their promise as charge-storage dielectric materials for use in organic memory devices.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Nanopartículas/química , Polímeros/química , Transistores Electrónicos , Reactivos de Enlaces Cruzados/síntesis química , Estructura Molecular , Tamaño de la Partícula , Polímeros/síntesis química , Propiedades de Superficie
6.
Macromol Rapid Commun ; 39(13): e1800271, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29845682

RESUMEN

Exploiting biomass has raised great interest as an alternative to the fossil resources for environmental protection. In this respect, polyethylene furanoate (PEF), one of the bio-based polyesters, thus reveals a great potential to replace the commonly used polyethylene terephthalate (PET) on account of its better mechanical, gas barrier, and thermal properties. Herein, a bio-based, flexible, conductive film is successfully developed by coupling a PEF plastic substrate with silver nanowires (Ag NWs). Besides the appealing advantage of renewable biomass, PEF also exhibits a good transparency around 90% in the visible wavelength range, and its constituent polar furan moiety is revealed to enable an intense interaction with Ag NWs to largely enhance the adhesion of Ag NWs grown above, as exemplified by the superior bending and peeling durability than the currently prevailing PET substrate. Finally, the efficiency of conductive PEF/Ag NWs film in fabricating efficient flexible organic thin-film transistor and organic photovoltaic (OPV) is demonstrated. The OPV device achieves a power conversion efficiency of 6.7%, which is superior to the device based on ITO/PEN device, manifesting the promising merit of the bio-based PEF for flexible electronic applications.


Asunto(s)
Conductividad Eléctrica , Membranas Artificiales , Nanocables/química , Polietilenos/química , Plata/química , Energía Solar
7.
ACS Appl Mater Interfaces ; 16(34): 45275-45288, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39137092

RESUMEN

Polymer-wrapped single-walled carbon nanotubes (SWNTs) are a potential method for obtaining high-purity semiconducting (sc) SWNT solutions. Conjugated polymers (CPs) can selectively sort sc-SWNTs with different chiralities, and the structure of the polymer side chains influences this sorting capability. While extensive research has been conducted on modifying the physical, optical, and electrical properties of CPs through side-chain modifications, the impact of these modifications on the sorting efficiency of sc-SWNTs remains underexplored. This study investigates the introduction of various conjugated side chains into naphthalene diimide-based CPs to create a biaxially extended conjugation pattern. The CP with a branched conjugated side chain (P3) exhibits reduced aggregation, resulting in improved wrapping ability and the formation of larger bundles of high-purity sc-SWNTs. Grazing incidence X-ray diffraction analysis confirms that the potential interaction between sc-SWNTs and CPs occurs through π-π stacking. The field-effect transistor device fabricated with P3/sc-SWNTs demonstrates exceptional performance, with a significantly enhanced hole mobility of 4.72 cm2 V-1 s-1 and high endurance/bias stability. These findings suggest that biaxially extended side-chain modification is a promising strategy for improving the sorting efficiency and performance of sc-SWNTs by using CPs. This achievement can facilitate the development of more efficient and stable electronic devices.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37897812

RESUMEN

The manipulation of the polymer backbone structure has a profound influence on the crystalline behavior and charge transport characteristics of polymers. These strategies are commonly employed to optimize the performance of stretchable polymer semiconductors. However, a universal method that can be applied to conjugated polymers with different donor-acceptor combinations is still lacking. In this study, we propose a universal strategy to boost the stretchability of polymers by incorporating the nonlinear conjugated linker (NCL) into the main chain. Specifically, we incorporate meta-dibromobenzene (MB), characterized by its asymmetric linkage sites, as the NCL into the backbone of diketopyrrolopyrrole-thiophene-based (DPP-based) polymers. Our research demonstrates that the introduction of MB prompts chain-kinking, thereby disrupting the linearity and central symmetry of the DPP conjugated backbone. This modification reshapes the polymer conformation, decreasing the radius of gyration and broadening the free volume, which consequently adjusts the level of crystallinity, leading to a considerable increase in the stretchability of the polymer. Importantly, this method increases stretchability without compromising mobility and exhibits broad applicability across a wide range of donor-acceptor pair polymers. Leveraging this strategy, fully stretchable transistors were fabricated using a DPP polymer that incorporates 10 mol % of MB. These transistors display a mobility of approximately 0.5 cm2 V-1 s-1 and prove remarkably durable, maintaining 90% of this mobility even after enduring 1000 cycles at 25% strain. Overall, we propose a method to systematically control the main-chain conformation, thereby enhancing the stretchability of conjugated polymers in a widely applicable manner.

9.
Science ; 380(6646): 735-742, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37200416

RESUMEN

Artificial skin that simultaneously mimics sensory feedback and mechanical properties of natural skin holds substantial promise for next-generation robotic and medical devices. However, achieving such a biomimetic system that can seamlessly integrate with the human body remains a challenge. Through rational design and engineering of material properties, device structures, and system architectures, we realized a monolithic soft prosthetic electronic skin (e-skin). It is capable of multimodal perception, neuromorphic pulse-train signal generation, and closed-loop actuation. With a trilayer, high-permittivity elastomeric dielectric, we achieved a low subthreshold swing comparable to that of polycrystalline silicon transistors, a low operation voltage, low power consumption, and medium-scale circuit integration complexity for stretchable organic devices. Our e-skin mimics the biological sensorimotor loop, whereby a solid-state synaptic transistor elicits stronger actuation when a stimulus of increasing pressure is applied.


Asunto(s)
Retroalimentación Sensorial , Robótica , Piel Artificial , Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Piel , Transistores Electrónicos
10.
Nat Biotechnol ; 41(5): 652-662, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36424488

RESUMEN

'Smart' bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.


Asunto(s)
Vendajes , Dispositivos Electrónicos Vestibles , Ratones , Animales , Cicatrización de Heridas , Piel , Monitoreo Fisiológico
11.
Science ; 375(6587): 1411-1417, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35324282

RESUMEN

Intrinsically stretchable bioelectronic devices based on soft and conducting organic materials have been regarded as the ideal interface for seamless and biocompatible integration with the human body. A remaining challenge is to combine high mechanical robustness with good electrical conduction, especially when patterned at small feature sizes. We develop a molecular engineering strategy based on a topological supramolecular network, which allows for the decoupling of competing effects from multiple molecular building blocks to meet complex requirements. We obtained simultaneously high conductivity and crack-onset strain in a physiological environment, with direct photopatternability down to the cellular scale. We further collected stable electromyography signals on soft and malleable octopus and performed localized neuromodulation down to single-nucleus precision for controlling organ-specific activities through the delicate brainstem.

12.
ACS Appl Mater Interfaces ; 11(45): 42429-42437, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31625392

RESUMEN

Photonic data storage has diverse optoelectronic applications such as optical sensing and recording, integrated image circuits, and multibit-storage flash memory. In this study, we employ conjugated/insulated polymer blends as the charge storage electret for photonic field-effect transistor memory devices by exploring the blend composition, energy level alignment, and morphology on the memory characteristics. The studied conjugated polymers included poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PF), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), poly[{2,5-di(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene}-co-{3-(4'-(3″,7″-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}-co-{3-(3'-(3',7'-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}] (SY-PPV), and poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT), and the insulated polymers were polystyrene (PS) and poly(methyl methacrylate) (PMMA). The photonic memory device using the PF/PS blend electret exhibited a dynamic switching behavior with light-writing and voltage-erasing processes both within only 1 s, along with a high contrast on the current on/off ratio between "Photo-On" and "Electrical-OFF" over 106 and the decent retention time for more than 3 months. In addition, the multilevel memory behavior could be observed using different light sources of 405, 450, and 520 nm or energy intensity, which was supported by surface potential analysis. The characteristics were superior to those of the devices using PF/PMMA blend due to the higher charge storage behavior of PS supported by fluorescence analysis. The PF/PS blend film prepared from the chlorobenzene solvent exhibited mesh-like and aggregated PF domains in the PS matrix and enhanced the contact surface area between the semiconductor and blend electret, leading to a higher memory window. The photonic memory behavior was also observed in the blend electrets of PS with the low band gap polymer, MEH-PPV, SY-PPV, or F8BT, by changing the photoresponsive light sources. Our study demonstrated a new electret system to apply on the multilevel photonic memory devices.

13.
Nanoscale ; 10(39): 18869-18877, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30277243

RESUMEN

Organic-inorganic hybrid perovskite has become one of the most important photoactive materials owing to its intense light-harvesting property as well as its facile solution processability. Besides its photovoltaic applications, a novel photo-programmed transistor memory was recently developed based on the device architecture of a floating-gate transistor memory using a polymer/perovskite blend as the gate dielectric with the non-volatile memory characteristics of decent light response, applicable On/Off current ratio, and long retention time. In this study, we further clarify the influence of polymer matrix selection on the photo-response and memory properties of derived hybrid perovskite-based photo-memory devices. Four different host polymers, polystyrene (PS), poly(4-vinylphenol) (PVPh), poly(methyl methacrylate) (PMMA), and poly(methacrylic acid) (PMAA), were systematically investigated for comparison herein. This revealed that dissimilar chemical interactions existed between the host polymers and perovskite, resulting in the distinct memory behavior of the derived photo-memory devices, attributable to the different morphologies of the hybrid dielectric layers and the different sizes of the distributed perovskite nanoparticles (NPs). The photo-response behavior and the resultant On/Off current ratio increased as the size of the embedded perovskite NPs decreased, due to the enhanced photo-induced charge transfer across the dielectric/pentacene interface, benefiting from the better confinement effect of perovskite NPs in the polymer matrix. These results demonstrate the influence of perovskite NP aggregation at the dielectric/pentacene interface on the resultant memory behavior of the newly developed photo-memory device.

14.
ACS Appl Mater Interfaces ; 10(51): 44741-44750, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30488691

RESUMEN

In this study, a series of alcohol-soluble cross-linked block copolymers (BCPs) consisting of poly( n-butyl acrylate) (poly( nBA)) and poly( N-vinyl-1,2,4-triazole) (poly(NVTri)) blocks with different individual functions and lengths are designed and developed. These presynthesized cross-linked BCPs (PBA n-Tri m) were, for the first time, revealed to exhibit many advantages in serving as the electron-extraction layer (EEL) for organic photovoltaics (OPVs). The cross-linked BCPs possessed intense ionic functionality, showing well capability to form effective interfacial dipoles at the indium tin oxide interface to facilitate the charge extraction at the corresponding interface. Furthermore, it also consisted a core-shell structure, wherein the polar poly(NVTri) core was well protected by the poly( nBA) shell to endow improved robustness against solvent erosion and thermal/photo inputs. Consequently, the PBA70-Tri30 device yielded a decent power conversion efficiency of 8.03% with a Voc of 0.83 V, much exceeding the performance of the control device without using any EEL. Moreover, this device showed superior thermal stability/photostability. More than 80% of its initial performance was retained after being heated at 60 °C for 1000 h or exposed under continuous illumination (1 sun) for 1000 h, greatly surpassing the lifetime of the control device and the reference device using a common poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) EEL. The results revealed the merit of using cross-linked BCPs in improving the long-term stability of OPVs.

15.
ACS Appl Mater Interfaces ; 9(30): 25522-25532, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28665108

RESUMEN

A stretchable and mechanical robust field-effect transistor is essential for soft wearable electronics. To realize stretchable transistors, elastic dielectrics with small current hysteresis, high elasticity, and high dielectric constants are the critical factor for low-voltage-driven devices. Here, we demonstrate the polar elastomer consisting of poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP):poly(4-vinylphenol) (PVP). Owing to the high dielectric constant of PVDF-HFP, the device can be operated under less than 5 V and shows a linear-regime hole mobility as high as 0.199 cm2 V-1 s-1 without significant current hysteresis. Specifically, the PVDF-HFP:PVP blends induce the vertical phase separation and significantly reduce current leakage and reduce the crystallization of PVDF segments, which can contribute current hysteresis in the OFET characteristics. All-stretchable OFETs based on these PVDF-HFP:PVP dielectrics were fabricated. The device can still keep the hole mobility of approximately 0.1 cm2/(V s) under a low operation voltage of 3 V even as stretched with 80% strain. Finally, we successfully fabricate a low-voltage-driven stretchable transistor. The low voltage operating under strains is the desirable characteristics for soft and comfortable wearable electronics.

16.
Chem Commun (Camb) ; 52(92): 13463-13466, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27790662

RESUMEN

Biocompatible deoxyribonucleic acid (DNA), with high mechanical strength, was employed as the substrate for a Ag nanowire (Ag NW) pattern and then used to fabricate flexible resistor-type memory devices. The memory exhibited typical write-once-read-many (WORM)-type memory features with a high ON/OFF ratio (104), long-term retention ability (104 s) and excellent mechanical endurance.


Asunto(s)
Materiales Biocompatibles/química , ADN/química , Nanocables/química , Plata/química , Estrés Mecánico
17.
Sci Rep ; 6: 20129, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26831222

RESUMEN

Nano-floating gate memory devices (NFGM) using metal nanoparticles (NPs) covered with an insulating polymer have been considered as a promising electronic device for the next-generation nonvolatile organic memory applications NPs. However, the transparency of the device with metal NPs is restricted to 60~70% due to the light absorption in the visible region caused by the surface plasmon resonance effects of metal NPs. To address this issue, we demonstrate a novel NFGM using the blends of hole-trapping poly (9-(4-vinylphenyl) carbazole) (PVPK) and electron-trapping ZnO NPs as the charge storage element. The memory devices exhibited a remarkably programmable memory window up to 60 V during the program/erase operations, which was attributed to the trapping/detrapping of charge carriers in ZnO NPs/PVPK composite. Furthermore, the devices showed the long-term retention time (>10(5) s) and WRER test (>200 cycles), indicating excellent electrical reliability and stability. Additionally, the fabricated transistor memory devices exhibited a relatively high transparency of 90% at the wavelength of 500 nm based on the spray-coated PEDOT: PSS as electrode, suggesting high potential for transparent organic electronic memory devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA