Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Drug Metab Dispos ; 51(7): 804-812, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37208185

RESUMEN

The emerging therapeutic modality of lipid nanoparticle (LNP)-encapsulated mRNAs has demonstrated promising clinical results when used as vaccines and is currently being tested in formulations for a wide range of targeted chronic disease treatments. These therapeutics are multicomponent assemblages of well-characterized naturally occurring molecules in addition to xenobiotic molecules, whose in vivo distributions are poorly understood. Here, the metabolic outcome and in vivo elimination of heptadecan-9-yl 8-((2-hydroxyethyl) (8-(nonyloxy)-8-oxooctyl)amino)octanoate (Lipid 5), a key xenobiotic amino lipid in LNP formulations, were assessed after intravenous administration of 14C-labeled Lipid 5 to Sprague-Dawley rats. Intact Lipid 5 was predominantly cleared from plasma within 10 hour after dosing, with only small quantities (<1% of 14C dose) of a single diacid metabolite detected after 10 hour. Lipid 5 was rapidly metabolized via ester hydrolysis into aliphatic alcohols and diacidic amino head group moieties, which were further metabolized via ß-oxidation. Overall, >90% of the administered Lipid 5-derived 14C was recovered in urine (65%) and feces (35%), predominantly as oxidative metabolites, within 72 hour after dosing, indicating rapid renal and hepatic elimination. In vitro metabolite identification after incubation with human, nonhuman primate, and rat hepatocytes showed similar metabolites to those found in vivo. No meaningful differences were observed in Lipid 5 metabolism or elimination by sex. In conclusion, Lipid 5, a critical amino lipid component of LNPs for mRNA therapeutic delivery, showed minimal exposure, rapid metabolism, and near-complete elimination of 14C metabolites in rats. SIGNIFICANCE STATEMENT: Heptadecan-9-yl 8-((2-hydroxyethyl) (8-(nonyloxy)-8-oxooctyl)amino)octanoate (Lipid 5) is a key component of lipid nanoparticles used for the delivery of mRNA-based medicines; understanding the rates and routes of its clearance is crucial to assessing its long-term safety in lipid nanoparticle technology. This study conclusively established the rapid metabolism, and near-complete elimination of intravenously administered [14C]Lipid 5 in rats via both liver and kidney as oxidative metabolites derived from ester hydrolysis and subsequent ß-oxidation.


Asunto(s)
Caprilatos , Nanopartículas , Ratas , Humanos , Animales , Ratas Sprague-Dawley , ARN Mensajero , Xenobióticos
2.
Bioanalysis ; 1(4): 831-45, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21083141

RESUMEN

HPLC detector technology has advanced dramatically over the past 20 years, with a range of highly sensitive and specific detectors becoming available. What is still missing from the bioanalyst's armoury, however, is a highly sensitive detector that gives an equimolar response independent of the compound. This would allow for quantification of compounds without the requirement for a synthetic standard or a radiolabeled analogue. In particular, such a detector applied to metabolism studies would establish the relative significance of the various metabolic routes. The recently issued US FDA guidelines on metabolites in safety testing (MIST) focus on the relative quantitation of human metabolites being obtained as soon as feasible in the drug-development process. In this article, current detector technology is reviewed with respect to its potential for quantitation without authentic standards or a radiolabel and put in the context of the MIST guidelines. The potential for future developments are explored.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/metabolismo , Calibración , Técnicas de Química Analítica/métodos , Descubrimiento de Drogas/legislación & jurisprudencia , Guías como Asunto , Humanos , Límite de Detección , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA