Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30612738

RESUMEN

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Reparación del ADN por Recombinación
2.
Nat Rev Mol Cell Biol ; 21(10): 569, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32807976
3.
Blood ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917355

RESUMEN

Ataxia-telangiectasia (A-T) is an autosomal-recessive disorder caused by pathogenic variants (PVs) of the ATM gene. Children with A-T are predisposed to hematological malignancies. We aimed to investigate their characteristics and outcomes in order to generate data-based treatment recommendations. In this multinational, observational study we report 202 patients aged ≤25 years with A-T and hematological malignancies from 25 countries. Ninety-one patients (45%) presented with mature B-cell lymphomas, 82 (41%) with acute lymphoblastic leukemia/lymphoma, 21(10%) with Hodgkin lymphoma and eight (4%) with other hematological malignancies. Four-year overall survival and event-free survival (EFS) were 50.8% (95% CI 43.6-59.1) and 47.9% (95% CI 40.8-56.2), respectively. Cure rates have not significantly improved over the last four decades (p=.76). The major cause of treatment failure was treatment-related mortality (TRM) with a four-year cumulative incidence of 25.9% (95% CI 19.5-32.4). Germline ATM PVs were categorized as null or hypomorphic and patients with available genetic data (n=110) were classified as having absent (n=81) or residual (n=29) ATM kinase activity. Four-year EFS was 39.4% (95% CI 29-53.3) vs 78.7% (95% CI 63.7-97.2), (p<.001), and TRM rates were 37.6% (95% CI 26.4-48.7) vs 4.0% (95% CI 0-11.8), (p=.017), for those with absent and residual ATM kinase activity, respectively. Absence of ATM kinase activity was independently associated with decreased EFS (HR=0.362, 95% CI 0.16-0.82; p=.009) and increased TRM (HR=14.11, 95% CI 1.36-146.31; p=.029). Patients with A-T and leukemia/lymphoma may benefit from de-escalated therapy for patients with absent ATM kinase activity and near-standard therapy regimens for those with residual kinase activity.

4.
Mol Cell ; 69(5): 866-878.e7, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499138

RESUMEN

Double-strand breaks (DSBs) are critical DNA lesions that robustly activate the elaborate DNA damage response (DDR) network. We identified a critical player in DDR fine-tuning: the E3/E4 ubiquitin ligase UBE4A. UBE4A's recruitment to sites of DNA damage is dependent on primary E3 ligases in the DDR and promotes enhancement and sustainment of K48- and K63-linked ubiquitin chains at these sites. This step is required for timely recruitment of the RAP80 and BRCA1 proteins and proper organization of RAP80- and BRCA1-associated protein complexes at DSB sites. This pathway is essential for optimal end resection at DSBs, and its abrogation leads to upregulation of the highly mutagenic alternative end-joining repair at the expense of error-free homologous recombination repair. Our data uncover a critical regulatory level in the DSB response and underscore the importance of fine-tuning the complex DDR network for accurate and balanced execution of DSB repair.


Asunto(s)
Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Reparación del ADN por Recombinación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Proteína BRCA1/genética , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Células HeLa , Chaperonas de Histonas , Humanos , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
5.
EMBO J ; 40(2): e104400, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33215756

RESUMEN

The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.


Asunto(s)
Daño del ADN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteómica/métodos , Transducción de Señal/genética
6.
Nat Rev Mol Cell Biol ; 14(4): 197-210, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23486281

RESUMEN

The protein kinase ataxia-telangiectasia mutated (ATM) is best known for its role as an apical activator of the DNA damage response in the face of DNA double-strand breaks (DSBs). Following induction of DSBs, ATM mobilizes one of the most extensive signalling networks that responds to specific stimuli and modifies directly or indirectly a broad range of targets. Although most ATM research has focused on this function, evidence suggests that ATM-mediated phosphorylation has a role in the response to other types of genotoxic stress. Moreover, it has become apparent that ATM is active in other cell signalling pathways involved in maintaining cellular homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Daño del ADN , Reparación del ADN , Homeostasis/genética , Humanos , Modelos Genéticos , Fosforilación , Transducción de Señal/genética
7.
Nat Rev Mol Cell Biol ; 14(4): 197-210, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23847781

RESUMEN

The protein kinase ataxia-telangiectasia mutated (ATM) is best known for its role as an apical activator of the DNA damage response in the face of DNA double-strand breaks (DSBs). Following induction of DSBs, ATM mobilizes one of the most extensive signalling networks that responds to specific stimuli and modifies directly or indirectly a broad range of targets. Although most ATM research has focused on this function, evidence suggests that ATM-mediated phosphorylation has a role in the response to other types of genotoxic stress. Moreover, it has become apparent that ATM is active in other cell signalling pathways involved in maintaining cellular homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Daño del ADN , Proteínas de Unión al ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Núcleo Celular/enzimología , Homeostasis , Humanos , Neuronas/enzimología , Oxidación-Reducción , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Vasos Retinianos/enzimología , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
8.
Cell ; 140(3): 308-10, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20144755

RESUMEN

The tumor suppressor protein p53, a crucial player in the DNA damage response, is regulated in many ways, most notably through ubiquitination. In this issue, Yuan et al. (2010) identify the deubiquitinating protease USP10 as a new regulator of p53 in the DNA damage response and tumor development.


Asunto(s)
Reparación del ADN , Ubiquitina Tiolesterasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación
9.
Nucleic Acids Res ; 46(2): 730-747, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29253183

RESUMEN

The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDR.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas Nucleares/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Fosforilación , Proteína I de Unión a Poli(A)/genética , Unión Proteica , Mapas de Interacción de Proteínas , Interferencia de ARN
11.
Mol Cell ; 41(5): 529-42, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362549

RESUMEN

The cellular response to DNA double-strand breaks (DSBs) is mobilized by the protein kinase ATM, which phosphorylates key players in the DNA damage response (DDR) network. A major question is how ATM controls DSB repair. Optimal repair requires chromatin relaxation at damaged sites. Chromatin reorganization is coupled to dynamic alterations in histone posttranslational modifications. Here, we show that in human cells, DSBs induce monoubiquitylation of histone H2B, a modification that is associated in undamaged cells with transcription elongation. We find that this process relies on recruitment to DSB sites and ATM-dependent phosphorylation of the responsible E3 ubiquitin ligase: the RNF20-RNF40 heterodimer. H2B monoubiquitylation is required for timely recruitment of players in the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair-and optimal repair via both pathways. Our data and previous data suggest a two-stage model for chromatin decondensation that facilitates DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/química , Proteínas de la Ataxia Telangiectasia Mutada , Cromatina/química , Cromatina/metabolismo , Ensayo Cometa/métodos , Células HeLa , Histonas/química , Humanos , Cinética , Fosforilación , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Recombinación Genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Semin Cancer Biol ; 37-38: 26-35, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26773346

RESUMEN

The genome is constantly attacked by a variety of genotoxic insults. The causal role for DNA damage in aging and cancer is exemplified by genetic defects in DNA repair that underlie a broad spectrum of acute and chronic human disorders that are characterized by developmental abnormalities, premature aging, and cancer predisposition. The disease symptoms are typically tissue-specific with uncertain genotype-phenotype correlation. The cellular DNA damage response (DDR) has been extensively investigated ever since yeast geneticists discovered DNA damage checkpoint mechanisms, several decades ago. In recent years, it has become apparent that not only cell-autonomous but also systemic DNA damage responses determine the outcome of genome instability in organisms. Understanding the mechanisms of non-cell-autonomous DNA damage responses will provide important new insights into the role of genome instability in human aging and a host of diseases including cancer and might better explain the complex phenotypes caused by genome instability.


Asunto(s)
Envejecimiento/genética , Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Neoplasias/genética , Animales , Senescencia Celular/genética , Roturas del ADN de Doble Cadena , Estudios de Asociación Genética , Humanos , Inmunidad Innata/genética , Mutación
13.
Nucleic Acids Res ; 43(9): 4517-30, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25855810

RESUMEN

The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Complejo del Señalosoma COP9 , Línea Celular , Células Cultivadas , Proteínas Cullin/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo
14.
Mol Cell ; 31(2): 167-77, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657500

RESUMEN

Ataxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin. Significantly, knockdown of the transcriptional repressor KAP-1, an ATM substrate, or the heterochromatin-building factors HP1 or HDAC1/2 alleviates the requirement for ATM in DSB repair. We propose that ATM signaling temporarily perturbs heterochromatin via KAP-1, which is critical for DSB repair/processing within otherwise compacted/inflexible chromatin. In support of this, ATM signaling alters KAP-1 affinity for chromatin enriched for heterochromatic factors. These data suggest that the importance of ATM signaling for DSB repair increases as the heterochromatic component of a genome expands.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Heterocromatina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Desoxirribonucleasas/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/enzimología , Fibroblastos/efectos de la radiación , Heterocromatina/efectos de la radiación , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ratones , Células 3T3 NIH , Radiación Ionizante , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de la radiación , Proteína 28 que Contiene Motivos Tripartito
15.
EMBO J ; 28(23): 3667-80, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19851285

RESUMEN

Human tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond at a DNA 3' end linked to a tyrosyl moiety. This type of linkage is found at stalled topoisomerase I (Top1)-DNA covalent complexes, and TDP1 has been implicated in the repair of such complexes. Here we show that Top1-associated DNA double-stranded breaks (DSBs) induce the phosphorylation of TDP1 at S81. This phosphorylation is mediated by the protein kinases: ataxia-telangiectasia-mutated (ATM) and DNA-dependent protein kinase (DNA-PK). Phosphorylated TDP1 forms nuclear foci that co-localize with those of phosphorylated histone H2AX (gammaH2AX). Both Top1-induced replication- and transcription-mediated DNA damages induce TDP1 phosphorylation. Furthermore, we show that S81 phosphorylation stabilizes TDP1, induces the formation of XRCC1 (X-ray cross-complementing group 1)-TDP1 complexes and enhances the mobilization of TDP1 to DNA damage sites. Finally, we provide evidence that TDP1-S81 phosphorylation promotes cell survival and DNA repair in response to CPT-induced DSBs. Together; our findings provide a new mechanism for TDP1 post-translational regulation by ATM and DNA-PK.


Asunto(s)
Proteínas de Ciclo Celular/química , Reparación del ADN , Proteína Quinasa Activada por ADN/química , Proteínas de Unión al ADN/química , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Supresoras de Tumor/química , Ataxia Telangiectasia/enzimología , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada , Carnitina O-Palmitoiltransferasa/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Supervivencia Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/fisiología , Fosforilación/genética , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Serina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
16.
Nat Cell Biol ; 8(8): 870-6, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16862143

RESUMEN

The cellular DNA-damage response is a signaling network that is vigorously activated by cytotoxic DNA lesions, such as double-strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which modulates this process by phosphorylating key players in these pathways. A long-standing question in this field is whether DSB formation affects chromatin condensation. Here, we show that DSB formation is followed by ATM-dependent chromatin relaxation. ATM's effector in this pathway is the protein KRAB-associated protein (KAP-1, also known as TIF1beta, KRIP-1 or TRIM28), previously known as a corepressor of gene transcription. In response to DSB induction, KAP-1 is phosphorylated in an ATM-dependent manner on Ser 824. KAP-1 is phosphorylated exclusively at the damage sites, from which phosphorylated KAP-1 spreads rapidly throughout the chromatin. Ablation of the phosphorylation site of KAP-1 leads to loss of DSB-induced chromatin decondensation and renders the cells hypersensitive to DSB-inducing agents. Knocking down KAP-1, or mimicking a constitutive phosphorylation of this protein, leads to constitutive chromatin relaxation. These results suggest that chromatin relaxation is a fundamental pathway in the DNA-damage response and identify its primary mediators.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Represoras/fisiología , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Microscopía Fluorescente , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Cinostatina/farmacología
17.
EMBO Rep ; 12(7): 713-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21637298

RESUMEN

The cellular response to double-strand breaks (DSBs) in DNA is a complex signalling network, mobilized by the nuclear protein kinase ataxia-telangiectasia mutated (ATM), which phosphorylates many factors in the various branches of this network. A main question is how ATM regulates DSB repair. Here, we identify the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) as an ATM target. PNKP phosphorylates 5'-OH and dephosphorylates 3'-phosphate DNA ends that are formed at DSB termini caused by DNA-damaging agents, thereby regenerating legitimate ends for further processing. We establish that the ATM phosphorylation targets on human PNKP-Ser 114 and Ser 126-are crucial for cellular survival following DSB induction and for effective DSB repair, being essential for damage-induced enhancement of the activity of PNKP and its proper accumulation at the sites of DNA damage. These findings show a direct functional link between ATM and the DSB-repair machinery.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Citotoxinas/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Enzimas Reparadoras del ADN/genética , Células HEK293 , Humanos , Ratones , Fosforilación/efectos de los fármacos , Cinostatina/farmacología
18.
Nat Rev Cancer ; 3(3): 155-68, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12612651

RESUMEN

Maintenance of genome stability is essential for avoiding the passage to neoplasia. The DNA-damage response--a cornerstone of genome stability--occurs by a swift transduction of the DNA-damage signal to many cellular pathways. A prime example is the cellular response to DNA double-strand breaks, which activate the ATM protein kinase that, in turn, modulates numerous signalling pathways. ATM mutations lead to the cancer-predisposing genetic disorder ataxia-telangiectasia (A-T). Understanding ATM's mode of action provides new insights into the association between defective responses to DNA damage and cancer, and brings us closer to resolving the issue of cancer predisposition in some A-T carriers.


Asunto(s)
Ataxia Telangiectasia/genética , Transformación Celular Neoplásica/genética , Reparación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Ataxia Telangiectasia/enzimología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular , Rotura Cromosómica , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN , Activación Enzimática , Genes cdc , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Noqueados , Modelos Genéticos , Familia de Multigenes , Síndromes Neoplásicos Hereditarios/enzimología , Síndromes Neoplásicos Hereditarios/genética , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteínas Supresoras de Tumor
19.
Nucleic Acids Res ; 39(Database issue): D793-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21097778

RESUMEN

The rapid accumulation of knowledge on biological signaling pathways and their regulatory mechanisms has highlighted the need for specific repositories that can store, organize and allow retrieval of pathway information in a way that will be useful for the research community. SPIKE (Signaling Pathways Integrated Knowledge Engine; http://www.cs.tau.ac.il/&~spike/) is a database for achieving this goal, containing highly curated interactions for particular human pathways, along with literature-referenced information on the nature of each interaction. To make database population and pathway comprehension straightforward, a simple yet informative data model is used, and pathways are laid out as maps that reflect the curator’s understanding and make the utilization of the pathways easy. The database currently focuses primarily on pathways describing DNA damage response, cell cycle, programmed cell death and hearing related pathways. Pathways are regularly updated, and additional pathways are gradually added. The complete database and the individual maps are freely exportable in several formats. The database is accompanied by a stand-alone software tool for analysis and dynamic visualization of pathways.


Asunto(s)
Bases de Datos Factuales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal , Apoptosis , Ciclo Celular , Daño del ADN , Humanos
20.
Proc Natl Acad Sci U S A ; 107(5): 2207-12, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133864

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and is considered to be the outcome of chronic liver inflammation. Currently, the main treatment for HCC is surgical resection. However, survival rates are suboptimal partially because of tumor recurrence in the remaining liver. Our aim was to understand the molecular mechanisms linking liver regeneration under chronic inflammation to hepatic tumorigenesis. Mdr2-KO mice, a model of inflammation-associated cancer, underwent partial hepatectomy (PHx), which led to enhanced hepatocarcinogenesis. Moreover, liver regeneration in these mice was severely attenuated. We demonstrate the activation of the DNA damage-response machinery and increased genomic instability during early liver inflammatory stages resulting in hepatocyte apoptosis, cell-cycle arrest, and senescence and suggest their involvement in tumor growth acceleration subsequent to PHx. We propose that under the regenerative proliferative stress induced by liver resection, the genomic unstable hepatocytes generated during chronic inflammation escape senescence and apoptosis and reenter the cell cycle, triggering the enhanced tumorigenesis. Thus, we clarify the immediate and long-term contributions of the DNA damage response to HCC development and recurrence.


Asunto(s)
Neoplasias Hepáticas Experimentales/etiología , Neoplasias Hepáticas Experimentales/fisiopatología , Regeneración Hepática/fisiología , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Roturas del ADN de Doble Cadena , Expresión Génica , Inestabilidad Genómica , Hepatectomía , Humanos , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Regeneración Hepática/genética , Ratones , Ratones Noqueados , Modelos Biológicos , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA