Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neurosci ; 42(12): 2598-2612, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35121635

RESUMEN

Tuberous sclerosis complex (TSC) is caused by mutations in Tsc1 or Tsc2, whose gene products inhibit the small G-protein Rheb1. Rheb1 activates mTORC1, which may cause refractory epilepsy, intellectual disability, and autism. The mTORC1 inhibitors have been used for TSC patients with intractable epilepsy. However, its effectiveness for cognitive symptoms remains unclear. We found a new signaling pathway for synapse formation through Rheb1 activation, but not mTORC1. Here, we show that treatment with the farnesyltransferase inhibitor lonafarnib increased unfarnesylated (inactive) Rheb1 levels and restored synaptic abnormalities in cultured Tsc2+/- neurons, whereas rapamycin did not enhance spine synapse formation. Lonafarnib treatment also restored the plasticity-related Arc (activity-regulated cytoskeleton-associated protein) expression in cultured Tsc2+/- neurons. Lonafarnib action was partly dependent on the Rheb1 reduction with syntenin. Oral administration of lonafarnib increased unfarnesylated protein levels without affecting mTORC1 and MAP (mitogen-activated protein (MAP)) kinase signaling, and restored dendritic spine morphology in the hippocampi of male Tsc2+/- mice. In addition, lonafarnib treatment ameliorated contextual memory impairments and restored memory-related Arc expression in male Tsc2+/- mice in vivo Heterozygous Rheb1 knockout in male Tsc2+/- mice reproduced the results observed with pharmacological treatment. These results suggest that the Rheb1 activation may be responsible for synaptic abnormalities and memory impairments in Tsc2+/- mice, and its inhibition by lonafarnib could provide insight into potential treatment options for TSC-associated neuropsychiatric disorders.SIGNIFICANCE STATEMENT Tuberous sclerosis complex (TSC) is an autosomal-dominant disease that causes neuropsychiatric symptoms, including intractable epilepsy, intellectual disability (ID) and autism. No pharmacological treatment for ID has been reported so far. To develop a pharmacological treatment for ID, we investigated the mechanism of TSC and found that Rheb1 activation is responsible for synaptic abnormalities in TSC neurons. To inhibit Rheb1 function, we used the farnesyltransferase inhibitor lonafarnib, because farnesylation of Rheb1 is required for its activation. Lonafarnib treatment increased inactive Rheb1 and recovered proper synapse formation and plasticity-related Arc (activity-regulated cytoskeleton-associated protein) expression in TSC neurons. Furthermore, in vivo lonafarnib treatment restored contextual memory and Arc induction in TSC mice. Together, Rheb1 inhibition by lonafarnib could provide insight into potential treatments for TSC-associated ID.


Asunto(s)
Epilepsia Refractaria , Discapacidad Intelectual , Esclerosis Tuberosa , Animales , Cognición , Farnesiltransferasa , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Esclerosis Tuberosa/genética
2.
J Neurosci ; 41(39): 8134-8149, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34417327

RESUMEN

Tuberous sclerosis complex (TSC) is a multisystem developmental disorder characterized by hamartomas in various organs, such as the brain, lungs, and kidneys. Epilepsy, along with autism and intellectual disability, is one of the neurologic impairments associated with TSC that has an intimate relationship with developmental outcomes and quality of life. Sustained activation of the mammalian target of rapamycin (mTOR) via TSC1 or TSC2 mutations is known to be involved in the onset of epilepsy in TSC. However, the mechanism by which mTOR causes seizures remains unknown. In this study, we showed that, human induced pluripotent stem cell-derived TSC2-deficient (TSC2-/-) neurons exhibited elevated neuronal activity with highly synchronized Ca2+ spikes. Notably, TSC2-/- neurons presented enhanced Ca2+ influx via L-type Ca2+ channels (LTCCs), which contributed to the abnormal neurite extension and sustained activation of cAMP response element binding protein (CREB), a critical mediator of synaptic plasticity. Expression of Cav1.3, a subtype of LTCCs, was increased in TSC2-/- neurons, but long-term rapamycin treatment suppressed this increase and reversed the altered neuronal activity and neurite extensions. Thus, we identified Cav1.3 LTCC as a critical downstream component of TSC-mTOR signaling that would trigger enhanced neuronal network activity of TSC2-/- neurons. We suggest that LTCCs could be potential novel targets for the treatment of epilepsy in TSC.SIGNIFICANCE STATEMENT There is a close relationship between elevated mammalian target of rapamycin (mTOR) activity and epilepsy in tuberous sclerosis complex (TSC). However, the underlying mechanism by which mTOR causes epilepsy remains unknown. In this study, using human TSC2-/- neurons, we identified elevated Ca2+ influx via L-type Ca2+ channels as a critical downstream component of TSC-mTOR signaling and a potential cause of both elevated neuronal activity and neurite extension in TSC2-/- neurons. Our findings demonstrate a previously unrecognized connection between sustained mTOR activation and elevated Ca2+ signaling via L-type Ca2+ channels in human TSC neurons, which could cause epilepsy in TSC.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Diferenciación Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Proyección Neuronal/fisiología , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
3.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31454940

RESUMEN

Syntenin is an adaptor-like molecule that has two adjacent tandem postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ) domains. The PDZ domains of syntenin recognize multiple peptide motifs with low to moderate affinity. Many reports have indicated interactions between syntenin and a plethora of proteins. Through interactions with various proteins, syntenin regulates the architecture of the cell membrane. As a result, increases in syntenin levels induce the metastasis of tumor cells, protrusion along the neurite in neuronal cells, and exosome biogenesis in various cell types. Here, we review the updated data that support various roles for syntenin in the regulation of neuronal synapses, tumor cell invasion, and exosome control.


Asunto(s)
Dominios PDZ , Sinteninas/metabolismo , Animales , Biomarcadores , Membrana Celular/metabolismo , Susceptibilidad a Enfermedades , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Sinapsis/metabolismo , Sinteninas/química
4.
J Neurosci ; 36(16): 4534-48, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098696

RESUMEN

Aberrant branch formation of granule cell axons (mossy fiber sprouting) is observed in the dentate gyrus of many patients with temporal lobe epilepsy and in animal models of epilepsy. However, the mechanisms underlying mossy fiber sprouting remain elusive. Based on the hypothesis that seizure-mediated gene expression induces abnormal mossy fiber growth, we screened activity-regulated genes in the hippocampus and found that neuritin, an extracellular protein anchored to the cell surface, was rapidly upregulated after electroconvulsive seizures. Overexpression of neuritin in the cultured rat granule cells promoted their axonal branching. Also, kainic acid-dependent axonal branching was abolished in the cultured granule cells fromneuritinknock-out mice, suggesting that neuritin may be involved in activity-dependent axonal branching. Moreover,neuritinknock-out mice showed less-severe seizures in chemical kindling probably by reduced mossy fiber sprouting and/or increased seizure resistance. We found that inhibition of the fibroblast growth factor (FGF) receptor attenuated the neuritin-dependent axonal branching. FGF administration also increased branching in granule neurons, whereasneuritinknock-out mice did not show FGF-dependent axonal branching. In addition, FGF and neuritin treatment enhanced the recruitment of FGF receptors to the cell surface. These findings suggest that neuritin and FGF cooperate in inducing mossy fiber sprouting through FGF signaling. Together, these results suggest that FGF and neuritin-mediated axonal branch induction are involved in the aggravation of epilepsy. SIGNIFICANCE STATEMENT: This study reveals the molecular mechanism underlying mossy fiber sprouting. Mossy fiber sprouting is the aberrant axonal branching of granule neurons in the hippocampus, which is observed in patients with epilepsy. Excess amounts of neuritin, a protein upregulated by neural activity, promoted axonal branching in granule neurons. A deficiency of neuritin suppressed mossy fiber sprouting and resulted in mitigation of seizure severity. Neuritin and fibroblast growth factor (FGF) cooperated in stimulating FGF signaling and enhancing axonal branching. Neuritin is necessary for FGF-mediated recruitment of FGF receptors to the cell surface. The recruitment of FGF receptors would promote axonal branching. The discovery of this new mechanism should contribute to the development of novel antiepileptic drugs to inhibit axonal branching via neuritin-FGF signaling.


Asunto(s)
Axones/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , Animales , Axones/efectos de los fármacos , Femenino , Factores de Crecimiento de Fibroblastos/farmacología , Proteínas Ligadas a GPI/farmacología , Proteínas Ligadas a GPI/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/farmacología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento de Fibroblastos/agonistas , Transducción de Señal/efectos de los fármacos
5.
J Biol Chem ; 289(43): 30133-43, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25225289

RESUMEN

Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4-/- mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4-/- mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Conos de Crecimiento/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Axones/metabolismo , Tamaño de la Célula , Femenino , Hipocampo/citología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Estructura Terciaria de Proteína , Tubulina (Proteína)/metabolismo
6.
Mediators Inflamm ; 2014: 901902, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25197169

RESUMEN

Epilepsy is one of the most common chronic brain disorders worldwide, affecting 1% of people across different ages and backgrounds. Epilepsy is defined as the sporadic occurrence of spontaneous recurrent seizures. Accumulating preclinical and clinical evidence suggest that there is a positive feedback cycle between epileptogenesis and brain inflammation. Epileptic seizures increase key inflammatory mediators, which in turn cause secondary damage to the brain and increase the likelihood of recurrent seizures. Cytokines and prostaglandins are well-known inflammatory mediators in the brain, and their biosynthesis is enhanced following seizures. Such inflammatory mediators could be therapeutic targets for the development of new antiepileptic drugs. In this review, we discuss the roles of inflammatory mediators in epileptogenesis.


Asunto(s)
Epilepsia/inmunología , Epilepsia/metabolismo , Anticonvulsivantes/uso terapéutico , Citocinas/metabolismo , Encefalitis/tratamiento farmacológico , Encefalitis/inmunología , Encefalitis/metabolismo , Epilepsia/tratamiento farmacológico , Humanos
7.
Front Mol Neurosci ; 15: 1019343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36606143

RESUMEN

Tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose products form a complex and inactivate the small G-protein Rheb1. The activation of Rheb1 may cause refractory epilepsy, intellectual disability, and autism, which are the major neuropsychiatric manifestations of TSC. Abnormalities in dendritic spines and altered synaptic structure are hallmarks of epilepsy, intellectual disability, and autism. In addition, spine dysmorphology and aberrant synapse formation are observed in TSC animal models. Therefore, it is important to investigate the molecular mechanism underlying the regulation of spine morphology and synapse formation in neurons to identify therapeutic targets for TSC. In this review, we focus on the representative proteins regulated by Rheb1 activity, mTORC1 and syntenin, which are pivotal downstream factors of Rheb1 in the alteration of spine formation and synapse function in TSC neurons.

8.
J Neurosci ; 30(42): 14059-67, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20962227

RESUMEN

Growth cones regulate the speed and direction of neuronal outgrowth during development and regeneration. How the growth cone spatially and temporally regulates signals from guidance cues is poorly understood. Through a proteomic analysis of purified growth cones we identified isoforms of the 14-3-3 family of adaptor proteins as major constituents of the growth cone. Disruption of 14-3-3 via the R18 antagonist or knockdown of individual 14-3-3 isoforms switches nerve growth factor- and myelin-associated glycoprotein-dependent repulsion to attraction in embryonic day 13 chick and postnatal day 5 rat DRG neurons. These effects are reminiscent of switching responses observed in response to elevated cAMP. Intriguingly, R18-dependent switching is blocked by inhibitors of protein kinase A (PKA), suggesting that 14-3-3 proteins regulate PKA. Consistently, 14-3-3 proteins interact with PKA and R18 activates PKA by dissociating its regulatory and catalytic subunits. Thus, 14-3-3 heterodimers regulate the PKA holoenzyme and this activity plays a critical role in modulating neuronal responses to repellent cues.


Asunto(s)
Proteínas 14-3-3/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Conos de Crecimiento/fisiología , Proteínas 14-3-3/genética , Animales , Western Blotting , Embrión de Pollo , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Inmunoprecipitación , Glicoproteína Asociada a Mielina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Proteómica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Mol Syst Biol ; 6: 394, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20664640

RESUMEN

Although there has been significant progress in understanding the molecular signals that change cell morphology, mechanisms that cells use to monitor their size and length to regulate their morphology remain elusive. Previous studies suggest that polarizing cultured hippocampal neurons can sense neurite length, identify the longest neurite, and induce its subsequent outgrowth for axonogenesis. We observed that shootin1, a key regulator of axon outgrowth and neuronal polarization, accumulates in neurite tips in a neurite length-dependent manner; here, the property of cell length is translated into shootin1 signals. Quantitative live cell imaging combined with modeling analyses revealed that intraneuritic anterograde transport and retrograde diffusion of shootin1 account for its neurite length-dependent accumulation. Our quantitative model further explains that the length-dependent shootin1 accumulation, together with shootin1-dependent neurite outgrowth, constitutes a positive feedback loop that amplifies stochastic fluctuations of shootin1 signals, thereby generating an asymmetric signal for axon specification and neuronal symmetry breaking.


Asunto(s)
Forma de la Célula , Tamaño de la Célula , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Difusión , Retroalimentación Fisiológica , Conos de Crecimiento/metabolismo , Hipocampo/embriología , Cinesinas/metabolismo , Microscopía Fluorescente , Microscopía por Video , Modelos Neurológicos , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
10.
J Cell Biol ; 175(1): 147-57, 2006 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-17030985

RESUMEN

Neurons have the remarkable ability to polarize even in symmetrical in vitro environments. Although recent studies have shown that asymmetric intracellular signals can induce neuronal polarization, it remains unclear how these polarized signals are organized without asymmetric cues. We describe a novel protein, named shootin1, that became up-regulated during polarization of hippocampal neurons and began fluctuating accumulation among multiple neurites. Eventually, shootin1 accumulated asymmetrically in a single neurite, which led to axon induction for polarization. Disturbing the asymmetric organization of shootin1 by excess shootin1 disrupted polarization, whereas repressing shootin1 expression inhibited polarization. Overexpression and RNA interference data suggest that shootin1 is required for spatially localized phosphoinositide-3-kinase activity. Shootin1 was transported anterogradely to the growth cones and diffused back to the soma; inhibiting this transport prevented its asymmetric accumulation in neurons. We propose that shootin1 is involved in the generation of internal asymmetric signals required for neuronal polarization.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Secuencia de Aminoácidos , Animales , Polaridad Celular , Regulación de la Expresión Génica , Conos de Crecimiento/metabolismo , Hipocampo/citología , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Proteómica , Ratas , Alineación de Secuencia
11.
J Vis Exp ; (136)2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29985308

RESUMEN

Pentylenetetrazole (PTZ) is a GABA-A receptor antagonist. An intraperitoneal injection of PTZ into an animal induces an acute, severe seizure at a high dose, whereas sequential injections of a subconvulsive dose have been used for the development of chemical kindling, an epilepsy model. A single low-dose injection of PTZ induces a mild seizure without convulsion. However, repetitive low-dose injections of PTZ decrease the threshold to evoke a convulsive seizure. Finally, continuous low-dose administration of PTZ induces a severe tonic-clonic seizure. This method is simple and widely applicable to investigate the pathophysiology of epilepsy, which is defined as a chronic disease that involves repetitive seizures. This chemical kindling protocol causes repetitive seizures in animals. With this method, vulnerability to PTZ-mediated seizures or the degree of aggravation of epileptic seizures was estimated. These advantages have led to the use of this method for screening anti-epileptic drugs and epilepsy-related genes. In addition, this method has been used to investigate neuronal damage after epileptic seizures because the histological changes observed in the brains of epileptic patients also appear in the brains of chemical-kindled animals. Thus, this protocol is useful for conveniently producing animal models of epilepsy.


Asunto(s)
Encéfalo/efectos de los fármacos , Antagonistas del GABA/uso terapéutico , Excitación Neurológica/patología , Pentilenotetrazol/uso terapéutico , Convulsiones/inducido químicamente , Animales , Modelos Animales de Enfermedad , Antagonistas del GABA/efectos adversos , Antagonistas del GABA/farmacología , Inyecciones Intraperitoneales , Masculino , Ratones , Pentilenotetrazol/efectos adversos , Pentilenotetrazol/farmacología
12.
Sci Rep ; 8(1): 10132, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973613

RESUMEN

Neuritin is a small extracellular protein that plays important roles in the process of neural development, synaptic plasticity, and neural cell survival. Here we investigated the function of neuritin in a mouse model of optic nerve injury (ONI). ONI induced upregulation of neuritin mRNA in the retina of WT mice. The retinal structure and the number of retinal ganglion cells (RGCs) were normal in adult neuritin knockout (KO) mice. In vivo retinal imaging and histopathological analyses demonstrated that RGC death and inner retinal degeneration following ONI were more severe in neuritin KO mice. Immunoblot analyses revealed that ONI-induced phosphorylation of Akt and ERK were suppressed in neuritin KO mice. Our findings suggest that neuritin has neuroprotective effects following ONI and may be useful for treatment of posttraumatic complication.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Traumatismos del Nervio Óptico/genética , Células Ganglionares de la Retina/metabolismo , Animales , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Ganglionares de la Retina/patología , Regulación hacia Arriba
13.
Elife ; 72018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30082022

RESUMEN

Growth cones navigate axonal projection in response to guidance cues. However, it is unclear how they can decide the migratory direction by transducing the local spatial cues into protrusive forces. Here we show that knockout mice of Shootin1 display abnormal projection of the forebrain commissural axons, a phenotype similar to that of the axon guidance molecule netrin-1. Shallow gradients of netrin-1 elicited highly polarized Pak1-mediated phosphorylation of shootin1 within growth cones. We demonstrate that netrin-1-elicited shootin1 phosphorylation increases shootin1 interaction with the cell adhesion molecule L1-CAM; this, in turn, promotes F-actin-adhesion coupling and concomitant generation of forces for growth cone migration. Moreover, the spatially regulated shootin1 phosphorylation within growth cones is required for axon turning induced by netrin-1 gradients. Our study defines a mechano-effector for netrin-1 signaling and demonstrates that shootin1 phosphorylation is a critical readout for netrin-1 gradients that results in a directional mechanoresponse for axon guidance.


Asunto(s)
Orientación del Axón/fisiología , Quimiotaxis , Embrión de Mamíferos/fisiología , Conos de Crecimiento/fisiología , Mecanotransducción Celular , Proteínas del Tejido Nervioso/fisiología , Netrina-1/metabolismo , Actinas/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Embrión de Mamíferos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Netrina-1/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Fosforilación , Ratas , Ratas Wistar , Transducción de Señal , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
14.
Mol Biol Cell ; 14(6): 2461-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12808043

RESUMEN

Fission yeast Mei2p is an RNA-binding protein essential for induction of both premeiotic DNA synthesis and first meiotic division. Mei2p forms a dot structure at an apparently fixed position in the horse-tail nucleus during meiotic prophase. This dot formation requires a meiosis-specific RNA species, meiRNA, which is indispensable for meiosis I, and the emergence of the dot is an indicator of the ability of the cell to perform meiosis I. Herein, we have sought the identity of this dot. Analyses using chromosome segregation in haploid meiosis, reciprocal translocation of chromosomes, and gene translocation have led us to conclude that the Mei2p dot is in association with the sme2 gene on the short arm of chromosome II, which encodes meiRNA. Transcripts of sme2, rather than the DNA sequence of the gene, seem to be the determinant of the localization of the Mei2p dot. However, evidence suggests that the dot may not be a simple reflection of the attachment of Mei2p to meiRNA undergoing transcription. We speculate that the Mei2p dot is a specialized structure, either to foster the assembly of Mei2p and meiRNA or to perform some unidentified function indispensable for meiosis I.


Asunto(s)
Núcleo Celular/metabolismo , Cromosomas Fúngicos/metabolismo , Meiosis/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Genes Reporteros , Schizosaccharomyces/metabolismo
15.
Sci Rep ; 4: 5155, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24889507

RESUMEN

Mutations in the Tsc1 or Tsc2 genes cause tuberous sclerosis complex (TSC). Tsc1 and Tsc2 proteins form a complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) signalling through Rheb-GTPase. We found that Tsc2(+/-) neurons showed impaired spine synapse formation, which was resistant to an mTORC1 inhibitor. Knockdown of mTOR also failed to restore these abnormalities, suggesting mTORC may not participate in impaired spinogenesis in Tsc2(+/-) neurons. To address whether Rheb activation impairs spine synapse formation, we expressed active and inactive forms of Rheb in WT and Tsc2(+/-) neurons, respectively. Expression of active Rheb abolished dendritic spine formation in WT neurons, whereas inactive Rheb restored spine synapse formation in Tsc2(+/-) neurons. Moreover, inactivation of Rheb with farnesyl transferase inhibitors recovered spine synapse morphogenesis in Tsc2(+/-) neurons. In conclusion, dendritic spine abnormalities in TSC neurons may be caused through activation of Rheb, but not through of mTORC1.


Asunto(s)
Espinas Dendríticas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Neuropéptidos/metabolismo , Sinapsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Esclerosis Tuberosa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Morfogénesis , Proteína Homóloga de Ras Enriquecida en el Cerebro , Ratas , Ratas Transgénicas , Sinapsis/patología , Esclerosis Tuberosa/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
16.
Biomed Res Int ; 2013: 564534, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24364034

RESUMEN

14-3-3 proteins are abundantly expressed adaptor proteins that interact with a vast number of binding partners to regulate their cellular localization and function. They regulate substrate function in a number of ways including protection from dephosphorylation, regulation of enzyme activity, formation of ternary complexes and sequestration. The diversity of 14-3-3 interacting partners thus enables 14-3-3 proteins to impact a wide variety of cellular and physiological processes. 14-3-3 proteins are broadly expressed in the brain, and clinical and experimental studies have implicated 14-3-3 proteins in neurodegenerative disease. A recurring theme is that 14-3-3 proteins play important roles in pathogenesis through regulating the subcellular localization of target proteins. Here, we review the evidence that 14-3-3 proteins regulate aspects of neurodegenerative disease with a focus on their protective roles against neurodegeneration.


Asunto(s)
Proteínas 14-3-3/metabolismo , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/genética , Mapas de Interacción de Proteínas/genética , Proteínas 14-3-3/genética , Humanos , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores , Unión Proteica
18.
J Cell Biol ; 181(5): 817-29, 2008 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-18519736

RESUMEN

Actin polymerizes near the leading edge of nerve growth cones, and actin filaments show retrograde movement in filopodia and lamellipodia. Linkage between actin filament retrograde flow and cell adhesion molecules (CAMs) in growth cones is thought to be one of the mechanisms for axon outgrowth and guidance. However, the molecular basis for this linkage remains elusive. Here, we show that shootin1 interacts with both actin filament retrograde flow and L1-CAM in axonal growth cones of cultured rat hippocampal neurons, thereby mediating the linkage between them. Impairing this linkage, either by shootin1 RNA interference or disturbing the interaction between shootin1 and actin filament flow, inhibited L1-dependent axon outgrowth, whereas enhancing the linkage by shootin1 overexpression promoted neurite outgrowth. These results strengthen the actin flow-CAM linkage model ("clutch" model) for axon outgrowth and suggest that shootin1 is a key molecule involved in this mechanism.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Animales , Línea Celular , Citocalasina D/metabolismo , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/embriología , Hipocampo/metabolismo , Humanos , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Interferencia de ARN , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA