Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 429(6987): 86-92, 2004 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15103385

RESUMEN

COP1 (constitutively photomorphogenic 1) is a RING-finger-containing protein that functions to repress plant photomorphogenesis, the light-mediated programme of plant development. Mutants of COP1 are constitutively photomorphogenic, and this has been attributed to their inability to negatively regulate the proteins LAF1 (ref. 1) and HY5 (ref. 2). The role of COP1 in mammalian cells is less well characterized. Here we identify the tumour-suppressor protein p53 as a COP1-interacting protein. COP1 increases p53 turnover by targeting it for degradation by the proteasome in a ubiquitin-dependent fashion, independently of MDM2 or Pirh2, which are known to interact with and negatively regulate p53. Moreover, COP1 serves as an E3 ubiquitin ligase for p53 in vitro and in vivo, and inhibits p53-dependent transcription and apoptosis. Depletion of COP1 by short interfering RNA (siRNA) stabilizes p53 and arrests cells in the G1 phase of the cell cycle. Furthermore, we identify COP1 as a p53-inducible gene, and show that the depletion of COP1 and MDM2 by siRNA cooperatively sensitizes U2-OS cells to ionizing-radiation-induced cell death. Overall, these results indicate that COP1 is a critical negative regulator of p53 and represents a new pathway for maintaining p53 at low levels in unstressed cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Apoptosis , Secuencia de Bases , Proteínas Portadoras/genética , Línea Celular , Línea Celular Tumoral , Cisteína Endopeptidasas/metabolismo , Fase G1 , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Complejo de la Endopetidasa Proteasomal , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell Biol ; 23(23): 8846-61, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14612423

RESUMEN

The transcription coactivator p300 cannot acetylate native p53 tetramers, thus revealing intrinsic conformational constraints on p300-catalyzed acetylation. Consensus site DNA is an allosteric effector that promotes acetylation of p53, suggesting that p300 has an undefined conformationally flexible interface within the p53 tetramer. To identify such conformationally responsive p300-binding sites, p300 was subjected to peptide selection from a phage-peptide display library, a technique that can define novel protein-protein interfaces. The enriched p300-binding peptides contained a proline repeat (PXXP/PXPXP) motif, and five proline repeat motifs actually reside within the p53 transactivation domain, suggesting that this region of p53 may harbor the second p300 contact site. p300 binds in vitro to PXXP-containing peptides derived from the proline repeat domain, and PXXP-containing peptides inhibit sequence-specific DNA-dependent acetylation of p53, indicating that p300 docking to both the LXXLL and contiguous PXXP motif in p53 is required for p53 acetylation. Deletion of the proline repeat motif of p53 prevents DNA-dependent acetylation of p53 by occluding p300 from the p53-DNA complex. Sequence-specific DNA places an absolute requirement for the proline repeat domain to drive p53 acetylation in vivo. Chromatin immunoprecipitation was used to show that the proline repeat deletion mutant p53 is bound to the p21 promoter in vivo, but it is not acetylated, indicating that proline-directed acetylation of p53 is a post-DNA binding event. The PXXP repeat expands the basic interface of a p300-targeted transactivation domain, and proline-directed acetylation of p53 at promoters indicates that p300-mediated acetylation can be highly constrained by substrate conformation in vivo.


Asunto(s)
Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Regulación Alostérica , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Línea Celular , ADN/genética , ADN/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Prolina/química , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Proteína p53 Supresora de Tumor/genética
3.
Mol Cell Biol ; 24(22): 10083-98, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15509808

RESUMEN

Interferon regulatory factor 1 (IRF-1) and p53 control distinct sets of downstream genes; however, these two antioncogenic transcription factors converge to regulate p21 gene expression and to inhibit tumor formation. Here we investigate the mechanism by which IRF-1 and p53 synergize at the p21 promoter and show that stimulation of p21 transcription by IRF-1 does not require its DNA-binding activity but relies on the ability of IRF-1 to bind the coactivator p300 and to stimulate p53-dependent transcription by an allosteric mechanism. Deletion of the p300-binding sites in IRF-1 eliminates the ability of IRF-1 to stimulate p53 acetylation and associated p53 activity. Complementing this, small peptides derived from the IRF-1-p300 interface can bind to p300, stabilize the binding of p300 to DNA-bound p53, stimulate p53 acetylation in trans, and up-regulate p53-dependent activity from the p21 promoter. The nonacetylatable p53 mutant (p53-6KR) cannot be stimulated by IRF-1, further suggesting that p53 acetylation is the mechanism whereby IRF-1 modifies p53 activity. These data expand the core p300-p53 protein LXXLL and PXXP interface by including an IRF-1-p300 interface as an allosteric modifier of DNA-dependent acetylation of p53 at the p21 promoter.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/genética , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteína p300 Asociada a E1A , Humanos , Factor 1 Regulador del Interferón , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transactivadores/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
4.
Biochem J ; 397(2): 355-67, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16579792

RESUMEN

p53 ubiquitination catalysed by MDM2 (murine double minute clone 2 oncoprotein) provides a biochemical assay to dissect stages in E3-ubiquitin-ligase-catalysed ubiquitination of a conformationally flexible protein. A mutant form of p53 (p53(F270A)) containing a mutation in the second MDM2-docking site in the DNA-binding domain of p53 (F270A) is susceptible to modification of long-lived and high-molecular-mass covalent adducts in vivo. Mutant F270A is hyperubiquitinated in cells as defined by immunoprecipitation and immunoblotting with an anti-ubiquitin antibody. Transfection of His-tagged ubiquitin along with p53(R175H) or p53(F270A) also results in selective hyperubiquitination in cells under conditions where wild-type p53 is refractory to covalent modification. The extent of mutant p53(R175H) or p53(F270A) unfolding in cells as defined by exposure of the DO-12 epitope correlates with the extent of hyperubiquitination, suggesting a link between substrate conformation and E3 ligase function. The p53(F270A:6KR) chimaeric mutant (where 6KR refers to the simultaneous mutation of lysine residues at positions 370, 372, 373, 381, 382 and 386 to arginine) maintains the high-molecular-mass covalent adducts and is modified in an MDM2-dependent manner. Using an in vitro ubiquitination system, mutant p53(F270A) and the p53(F270A:6KR) chimaeric mutant is also subject to hyperubiquitination outwith the C-terminal domain, indicating direct recognition of the mutant p53 conformation by (a) factor(s) in the cell-free ubiquitination system. These data identify an in vitro and in vivo assay with which to dissect how oligomeric protein conformational alterations are linked to substrate ubiquitination in cells. This has implications for understanding the recognition of misfolded proteins during aging and in human diseases such as cancer.


Asunto(s)
Mutación Missense , Proteína p53 Supresora de Tumor/genética , Ubiquitina/metabolismo , Secuencias de Aminoácidos , Línea Celular Tumoral , Sistema Libre de Células , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutación , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transfección
5.
J Mol Biol ; 337(1): 129-45, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15001357

RESUMEN

Expanding on the possible protein interaction partners in a biochemical pathway is one key molecular goal in the post-genomic era. Phage peptide display is a versatile in vitro tool for mapping novel protein-protein interfaces and the advantage of this technique in expanding protein interaction maps is that in vitro manipulation of the bait protein conformational integrity can be controlled carefully. Phage peptide display was used to expand on the possible types of binding proteins for the conformationally responsive protein MDM2. Peptides enriched differ depending upon whether MDM2 is ligand-free, zinc-bound, or RNA-bound, suggesting that MDM2 conformational changes alter the type of peptide ligands enriched. Classes of putative/established MDM2-binding proteins identified by this technique included ubiquitin-modifying enzymes (F-box proteins, UB-ligases, UBC-E1) and apoptotic modifiers (HSP90, GAS1, APAF1, p53). Of the many putative MDM2 proteins that could be examined, the impact of HSP90 on MDM2 activity was studied, since HSP90 has been linked with p53 protein unfolding in human cancers. Zinc ions were required to reconstitute a stable MDM2-HSP90 protein complex. Zinc binding converted MDM2 from a monomer to an oligomer, and activated MDM2 binding to its internal RING finger domain, providing evidence for a conformational change in MDM2 protein when it binds zinc. Reconstitution of an HSP90-MDM2 protein complex in vitro stimulated the unfolding of the p53 tetramer. A p53 DNA-binding inhibitor purified from human cells that is capable of unfolding p53 at ambient temperature in vitro contains co-purifying pools of HSP90 and MDM2. These data highlight the utility of phage peptide display as a powerful in vitro method to identify regulatory proteins that bind to a conformationally flexible protein like MDM2.


Asunto(s)
Proteínas Nucleares , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Secuencia de Aminoácidos , Benzoquinonas , Línea Celular , Inhibidores Enzimáticos/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas , Ligandos , Sustancias Macromoleculares , Biblioteca de Péptidos , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2 , Quinonas/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Zinc/metabolismo
7.
Science ; 313(5790): 1122-6, 2006 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-16931761

RESUMEN

The ataxia telangiectasia mutated (ATM) protein kinase is a critical component of a DNA-damage response network configured to maintain genomic integrity. The abundance of an essential downstream effecter of this pathway, the tumor suppressor protein p53, is tightly regulated by controlled degradation through COP1 and other E3 ubiquitin ligases, such as MDM2 and Pirh2; however, the signal transduction pathway that regulates the COP1-p53 axis following DNA damage remains enigmatic. We observed that in response to DNA damage, ATM phosphorylated COP1 on Ser(387) and stimulated a rapid autodegradation mechanism. Ionizing radiation triggered an ATM-dependent movement of COP1 from the nucleus to the cytoplasm, and ATM-dependent phosphorylation of COP1 on Ser(387) was both necessary and sufficient to disrupt the COP1-p53 complex and subsequently to abrogate the ubiquitination and degradation of p53. Furthermore, phosphorylation of COP1 on Ser(387) was required to permit p53 to become stabilized and to exert its tumor suppressor properties in response to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etopósido/farmacología , Humanos , Mutación , Proteínas Nucleares/genética , Fosforilación , Fosfoserina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño , Radiación Ionizante , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
J Biol Chem ; 278(15): 13431-41, 2003 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-12499368

RESUMEN

Reconstitution of the stages in the assembly of the p300.p53 transcription complex has identified a novel type of DNA-dependent regulation of p300-catalyzed acetylation. Phosphorylation at the CHK2 site (Ser(20)) in the N-terminal activation domain of p53 stabilized p300 binding. The phosphopeptide binding activity of p300 was mapped in vitro to two domains: the C-terminal IBiD domain and the N-terminal IHD domain (IBiD homology domain). The IHD or IBiD minidomains can bind to the p53 activation domain in vivo as determined using the mammalian two-hybrid VP16-GAL4 luciferase reporter assay. The IHD and IBiD minidomains of p300 also functioned as dominant negative inhibitors of p53-dependent transcription in vivo. Upon examining the affects of p300 binding on substrate acetylation, we found that the p53 consensus site DNA promotes a striking increase in p53 acetylation in vitro. Co-transfection into cells of the p53 gene and plasmid DNA containing the consensus DNA binding site of p53 activated DNA-dependent acetylation of p53 in vivo. The phosphopeptide binding activity of p300 is critical for DNA-dependent acetylation, as p53 acetylation was inhibited by phospho-Ser(20) peptides. Consensus site DNA-dependent acetylation of p53 stabilized the p300.p53 protein complex, whereas basal acetylation of p53 by p300 in the presence of nonspecific DNA resulted in p300 dissociation. These data identify at least three distinct stages in the assembly of a p300.p53 complex: 1) p300 docking to the activation domain of p53 via the IBiD and/or IHD domains; 2) DNA-dependent acetylation of p53; and 3) stabilization of the p300.p53(AC) complex after acetylation. The ability of DNA to act as an allosteric ligand to activate substrate acetylation identifies a conformational constraint that can be placed on the p300-acetylation reaction that is likely to be an amplification signal and influence protein-protein contacts at a promoter.


Asunto(s)
ADN/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Cinética , Datos de Secuencia Molecular , Proteínas Nucleares/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transactivadores/química , Transfección , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/química
9.
J Biol Chem ; 277(32): 28446-58, 2002 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-11925449

RESUMEN

Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells.


Asunto(s)
Proteínas Nucleares , Proteínas Proto-Oncogénicas/química , Proteína p53 Supresora de Tumor/química , Ubiquitina/metabolismo , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Relación Dosis-Respuesta a Droga , Genes p53 , Humanos , Inmunohistoquímica , Leucina/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Biblioteca de Péptidos , Pruebas de Precipitina , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2 , Homología de Secuencia de Aminoácido , Serina/química , Activación Transcripcional , Transfección , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA