RESUMEN
Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.
Asunto(s)
Complejo CD3 , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Pulmonares , Proteínas de la Membrana , Carcinoma Pulmonar de Células Pequeñas , Linfocitos T , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/terapia , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Complejo CD3/inmunología , Animales , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Línea Celular Tumoral , Activación de Linfocitos/inmunología , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Endogenously produced reactive oxygen species reportedly stimulate insulin secretion from islet ß-cells. However, the molecular machinery that governs the oxidant-induced insulin secretion has yet to be determined. The present study demonstrates, using rat islet ß-cell-derived RINm5F cells, the involvement of the transient receptor potential (TRP) cation channels in the insulin secretion induced by the lipid peroxidation product 4-hydroxy-2-nonenal. Short-term (1 h) exposure of 4-hydroxy-2-nonenal induced a transient increase in intracellular Ca(2+) concentration and subsequent insulin secretion in a concentration-dependent manner. The increase in intracellular Ca(2+) concentration seemed to be due to an influx through the L-type voltage-dependent Ca(2+) channel, since it was not observed when extracellular Ca(2+) was absent and was inhibited almost completely by diltiazem or nifedipine. Ruthenium red, a non-specific inhibitor of TRP channels, inhibited the Ca(2+) influx and insulin secretion evoked by 4-hydroxy-2-nonenal. Among the TRP channels, TRPA1 was found to be predominantly expressed, not only in RINm5F cells, but also rat islets. TRPA1 agonists, allylisothiocyanate and 15-deoxy-Δ(12,14)-prostaglandin J(2), significantly induced Ca(2+) influx, and a specific inhibitor TRPA1, HC-030031, blocked the effects elicited by 4-hydroxy-2-nonenal. These results suggest that 4-hydroxy-2-nonenal induces Ca(2+) influx via the activation of TRP channels, including TRPA1, which appears to be coupled with the L-type voltage-dependent Ca(2+) channel, and ultimately insulin secretion in RINm5F cells.
Asunto(s)
Calcio/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Aldehídos/farmacología , Compuestos Alílicos/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Línea Celular , Diltiazem/farmacología , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Isocianatos/farmacología , Nifedipino/farmacología , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacología , Ratas , Canal Catiónico TRPA1 , Canales Catiónicos TRPCRESUMEN
Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.
Asunto(s)
Adenosina Trifosfato , Neoplasias , Animales , Anticuerpos Monoclonales/farmacología , Antígenos de Neoplasias , Inmunoterapia , Ratones , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis TumoralRESUMEN
One-dimensional self-assembly of macrocycles is one of the important strategies for constructing fibrous nanomaterials with anisotropic functions such as one-dimensional transport and accumulation of molecules and ions. Herein we report on the synthesis and properties of self-assembled nanofibers using macrocycles to develop a multipurpose template for one-dimensional array of noble metal ions. The nanofibers were prepared by protonation-induced self-assembly of bis-phenanthroline macrocycles, which have enabled the accumulation of some metal-containing anions, such as tetrachloroaurate, hexachloroplatinate and phosphomolybdate. Microscopic observations have demonstrated that the supramolecular nanofibers were reproducibly formed in a similar way, regardless of the structures and charge numbers of the anions. Moreover, the resulting nanofibers, arrayed with several metal ions, were chemically reduced, producing dispersible gold nanoparticles and mixed-valence nanofibers.
RESUMEN
The extracellular adenosine triphosphate (ATP) concentration is highly elevated in the tumor microenvironment (TME) and remains tightly regulated in normal tissues. Using phage display technology, we establish a method to identify an antibody that can bind to an antigen only in the presence of ATP. Crystallography analysis reveals that ATP bound in between the antibody-antigen interface serves as a switch for antigen binding. In a transgenic mouse model overexpressing the antigen systemically, the ATP switch antibody binds to the antigen in tumors with minimal binding in normal tissues and plasma and inhibits tumor growth. Thus, we demonstrate that elevated extracellular ATP concentration can be exploited to specifically target the TME, giving therapeutic antibodies the ability to overcome on-target off-tumor toxicity.
Asunto(s)
Adenosina Trifosfato/metabolismo , Anticuerpos/metabolismo , Espacio Extracelular/metabolismo , Animales , Humanos , Ratones , Microambiente TumoralRESUMEN
The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library.