Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 486-504, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776516

RESUMEN

The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.


Asunto(s)
Empalme Alternativo , Atrofias Olivopontocerebelosas , Ataxias Espinocerebelosas , Animales , Ratones , Empalme Alternativo/genética , Cerebelo , Mutación , Progresión de la Enfermedad , Expansión de Repetición de Trinucleótido
2.
Exp Brain Res ; 242(2): 321-336, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059986

RESUMEN

Depression is a common non-motor symptom in Parkinson's disease (PD) that includes anhedonia and impacts quality of life but is not effectively treated with conventional antidepressants clinically. Vagus nerve stimulation improves treatment-resistant depression in the general population, but research about its antidepressant efficacy in PD is limited. Here, we administered peripheral non-invasive focused ultrasound to hemiparkinsonian ('PD') and non-parkinsonian (sham) rats to mimic vagus nerve stimulation and assessed its antidepressant-like efficacy. Following 6-hydroxydopamine (6-OHDA) lesion, akinesia-like immobility was assessed in the limb-use asymmetry test, and despair- and anhedonic-like behaviors were evaluated in the forced swim test and sucrose preference test, respectively. After, tyrosine hydroxylase immuno-staining was employed to visualize and quantify dopaminergic degeneration in the substantia nigra pars compacta, ventral tegmental area, and striatum. We found that PD rats exhibited akinesia-like immobility and > 90% reduction in tyrosine hydroxylase immuno-staining ipsilateral to the lesioned side. PD rats also demonstrated anhedonic-like behavior in the sucrose preference test compared to sham rats. No 6-OHDA lesion effect on immobility in the forced swim test limited conclusions about the efficacy of ultrasound on despair-like behavior. However, ultrasound improved anhedonic-like behavior in PD rats and this efficacy was sustained through the end of the 1-week recovery period. The greatest number of animals demonstrating increased sucrose preference was in the PD group receiving ultrasound. Our findings here are the first to posit that peripheral non-invasive focused ultrasound to the celiac plexus may improve anhedonia in PD with further investigation needed to reveal its potential for clinical applicability.


Asunto(s)
Anhedonia , Enfermedad de Parkinson , Humanos , Ratas , Animales , Anhedonia/fisiología , Ratas Wistar , Tirosina 3-Monooxigenasa , Calidad de Vida , Enfermedad de Parkinson/patología , Oxidopamina , Antidepresivos , Sacarosa , Modelos Animales de Enfermedad
3.
J Neuroinflammation ; 18(1): 152, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229727

RESUMEN

BACKGROUND: The immune pathways in Alzheimer's disease (AD) remain incompletely understood. Our recent study indicates that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the brain barriers of aged mice and that their activation alleviates aging-associated cognitive decline. The regulation and function of ILC2 in AD, however, remain unknown. METHODS: In this study, we examined the numbers and functional capability of ILC2 from the triple transgenic AD mice (3xTg-AD) and control wild-type mice. We investigated the effects of treatment with IL-5, a cytokine produced by ILC2, on the cognitive function of 3xTg-AD mice. RESULTS: We demonstrate that brain-associated ILC2 are numerically and functionally defective in the triple transgenic AD mouse model (3xTg-AD). The numbers of brain-associated ILC2 were greatly reduced in 7-month-old 3xTg-AD mice of both sexes, compared to those in age- and sex-matched control wild-type mice. The remaining ILC2 in 3xTg-AD mice failed to efficiently produce the type 2 cytokine IL-5 but gained the capability to express a number of proinflammatory genes. Administration of IL-5, a cytokine produced by ILC2, transiently improved spatial recognition and learning in 3xTg-AD mice. CONCLUSION: Our results collectively indicate that numerical and functional deficiency of ILC2 might contribute to the cognitive impairment of 3xTg-AD mice.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Linfocitos/inmunología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
4.
Exp Physiol ; 106(4): 1038-1060, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33512049

RESUMEN

NEW FINDINGS: What is the central question of this study? Does peripheral non-invasive focused ultrasound targeted to the celiac plexus improve inflammatory bowel disease? What is the main finding and its importance? Peripheral non-invasive focused ultrasound targeted to the celiac plexus in a rat model of ulcerative colitis improved stool consistency and reduced stool bloodiness, which coincided with a longer and healthier colon than in animals without focused ultrasound treatment. The findings suggest that this novel neuromodulatory technology could serve as a plausible therapeutic approach for improving symptoms of inflammatory bowel disease. ABSTRACT: Individuals suffering from inflammatory bowel disease (IBD) experience significantly diminished quality of life. Here, we aim to stimulate the celiac plexus with non-invasive peripheral focused ultrasound (FUS) to modulate the enteric cholinergic anti-inflammatory pathway. This approach may have clinical utility as an efficacious IBD treatment given the non-invasive and targeted nature of this therapy. We employed the dextran sodium sulfate (DSS) model of colitis, administering lower (5%) and higher (7%) doses to rats in drinking water. FUS on the celiac plexus administered twice a day for 12 consecutive days to rats with severe IBD improved stool consistency scores from 2.2 ± 1 to 1.0 ± 0.0 with peak efficacy on day 5 and maximum reduction in gross bleeding scores from 1.8 ± 0.8 to 0.8 ± 0.8 on day 6. Similar improvements were seen in animals in the low dose DSS group, who received FUS only once daily for 12 days. Moreover, animals in the high dose DSS group receiving FUS twice daily maintained colon length (17.7 ± 2.5 cm), while rats drinking DSS without FUS exhibited marked damage and shortening of the colon (13.8 ± 0.6 cm) as expected. Inflammatory cytokines such as interleukin (IL)-1ß, IL-6, IL-17, tumour necrosis factor-α and interferon-γ were reduced with DSS but coincided with control levels after FUS, which is plausibly due to a loss of colon crypts in the former and healthier crypts in the latter. Lastly, overall, these results suggest non-invasive FUS of peripheral ganglion can deliver precision therapy to improve IBD symptomology.


Asunto(s)
Plexo Celíaco , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Plexo Celíaco/metabolismo , Plexo Celíaco/patología , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Sulfato de Dextran/uso terapéutico , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Ratas
5.
Neuromodulation ; 23(4): 515-524, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32369255

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a well-accepted treatment of Parkinson's disease (PD). Motor phenotypes include tremor-dominant (TD), akinesia-rigidity (AR), and postural instability gait disorder (PIGD). The mechanism of action in how DBS modulates motor symptom relief remains unknown. OBJECTIVE: Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to determine whether the functional activity varies in response to DBS depending on PD phenotypes. MATERIALS AND METHODS: Subjects underwent an fMRI scan with DBS cycling ON and OFF. The effects of DBS cycling on BOLD activation in each phenotype were documented through voxel-wise analysis. For each region of interest, ANOVAs were performed using T-values and covariate analyses were conducted. Further, a correlation analysis was performed comparing stimulation settings to T-values. Lastly, T-values of subjects with motor improvement were compared to those who worsened. RESULTS: As a group, BOLD activation with DBS-ON resulted in activation in the motor thalamus (p < 0.01) and globus pallidus externa (p < 0.01). AR patients had more activation in the supplementary motor area (SMA) compared to PIGD (p < 0.01) and TD cohorts (p < 0.01). Further, the AR cohort had more activation in primary motor cortex (MI) compared to the TD cohort (p = 0.02). Implanted nuclei (p = 0.01) and phenotype (p = <0.01) affected activity in MI and phenotype alone affected SMA activity (p = <0.01). A positive correlation was seen between thalamic activation and pulse-width (p = 0.03) and between caudate and total electrical energy delivered (p = 0.04). CONCLUSIONS: These data suggest that DBS modulates network activity differently based on patient motor phenotype. Improved understanding of these differences may further our knowledge about the mechanisms of DBS action on PD motor symptoms and to optimize treatment.


Asunto(s)
Encéfalo/fisiopatología , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Anciano , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo
6.
Neuromodulation ; 20(5): 471-477, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28493348

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN DBS) is an established treatment in Parkinson's disease (PD). We investigate the effect of eye opening on neuronal activity and local field potentials (LFPs) in the STN. METHODS: We prospectively enrolled 25 PD patients undergoing STN DBS in our institution. During DBS, single-unit activity (SUA) and LFPs were measured when eyes were open and closed. As movement is known to result in changes in LFPs, we tested response to eye opening in the presence and absence of movement. RESULTS: Neither eye state nor arm movement has a significant influence on SUA recordings. There is a statistically significant interaction between eye state and arm movement (p < 0.05). In the presence of movement, STN SUA increase when eyes open (p < 0.05). When eyes are closed, STN SUA decrease with movement (p < 0.05). STN theta LFP oscillations decrease when eyes are open compared to closed, irrespective of movement status (p < 0.05). DISCUSSION: STN activity is influenced by eye state and arm movement. It is unclear whether this is attributed to a change in the STN's role in oculomotor control or from a change in attentional state. Understanding how physiologic normal activity alters neural activity is critical for the optimization of DBS therapy, particularly in closed-loop neuromodulation.


Asunto(s)
Potenciales de Acción/fisiología , Estimulación Encefálica Profunda/métodos , Movimientos Oculares/fisiología , Enfermedad de Parkinson/cirugía , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Estudios Prospectivos
7.
Neuromodulation ; 19(7): 698-707, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27284636

RESUMEN

BACKGROUND: Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). OBJECTIVE: In this study, we examined how single unit and LFP oscillatory activity in the basal ganglia are impacted by mechanical and thermal sensory stimuli and explored their role in pain modulation. METHODS: We assessed changes in LFPs and SUAs in the subthalamic nucleus (STN), globus pallidus interna (Gpi), and globus pallidus externa (Gpe) following exposure with mechanical or thermal stimuli. Sensory thresholds were determined pre-operatively using quantitative sensory testing. Based on these data, patients were exposed to innocuous and noxious mechanical, pressure, and thermal stimuli at individualized thresholds. RESULTS: In the STN, LFP alpha oscillatory activity and SUA increased in response to innocuous mechanical stimuli; SUA further increased in response to noxious mechanical, noxious pressure, and noxious thermal stimuli (p < 0.05). In the Gpe, LFP low betaactivity and SUA increased with noxious thermal stimuli; SUA also increased in response to innocuous thermal stimuli (p < 0.05). In the Gpi, innocuous thermal stimuli increased LFP gammaactivity; noxious pressure stimuli decreased low betaactivity; SUA increased in response to noxious thermal stimuli (p < 0.05). DISCUSSION: Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios Basales/citología , Potenciales Evocados Somatosensoriales/fisiología , Neuronas/fisiología , Enfermedad de Parkinson , Anciano , Anciano de 80 o más Años , Electroencefalografía , Femenino , Globo Pálido/fisiología , Humanos , Masculino , Microelectrodos , Persona de Mediana Edad , Vías Nerviosas/fisiología , Dolor/etiología , Dolor/fisiopatología , Enfermedad de Parkinson/terapia , Estimulación Física/efectos adversos , Núcleo Subtalámico/fisiología , Temperatura
8.
Neurobiol Dis ; 73: 296-306, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25315683

RESUMEN

Epilepsy and autism spectrum disorder (ASD) are common comorbidities of one another. Despite the prevalent correlation between the two disorders, few studies have been able to elucidate a mechanistic link. We demonstrate that forebrain specific Tsc1 deletion in mice causes epilepsy and autism-like behaviors, concomitant with disruption of 5-HT neurotransmission. We find that epileptiform activity propagates to the raphe nuclei, resulting in seizure-dependent hyperactivation of mTOR in 5-HT neurons. To dissect whether mTOR hyperactivity in 5-HT neurons alone was sufficient to recapitulate an autism-like phenotype we utilized Tsc1flox/flox;Slc6a4-cre mice, in which mTOR is restrictively hyperactivated in 5-HT neurons. Tsc1flox/flox;Slc6a4-cre mice displayed alterations of the 5-HT system and autism-like behaviors, without causing epilepsy. Rapamycin treatment in these mice was sufficient to rescue the phenotype. We conclude that the spread of seizure activity to the brainstem is capable of promoting hyperactivation of mTOR in the raphe nuclei, which in turn promotes autism-like behaviors. Thus our study provides a novel mechanism describing how epilepsy can contribute to the development of autism-like behaviors, suggesting new therapeutic strategies for autism.


Asunto(s)
Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/metabolismo , Conducta Animal/fisiología , Epilepsia/metabolismo , Neuronas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Núcleos del Rafe/metabolismo , Serotonina/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteína 1 del Complejo de la Esclerosis Tuberosa
9.
Eur J Neurosci ; 42(4): 2061-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26082992

RESUMEN

Chronic pain is a major complaint for up to 85% of Parkinson's disease patients; however, it often not identified as a symptom of Parkinson's disease. Adequate treatment of motor symptoms often provides analgesic effects in Parkinson's patients but how this occurs remains unclear. Studies have shown both Parkinson's patients and 6-hydroxydopamine-lesioned rats exhibit decreased sensory thresholds. In humans, some show improvements in these deficits after subthalamic deep brain stimulation, while others report no change. Differing methods of testing and response criteria may explain these varying results. We examined this effect in 6-hydroxydopamine-lesioned rats. Sprague-Dawley rats were unilaterally implanted with subthalamic stimulating electrodes in the lesioned right hemisphere and sensory thresholds were tested using von Frey, tail-flick and hot-plate tests. Tests were done during and off subthalamic stimulation at 50 and 150 Hz to assess its effects on sensory thresholds. The 6-hydroxydopamine-lesioned animals exhibited lower mechanical (left paw, P < 0.01) and thermal thresholds than shams (hot plate, P < 0.05). Both 50 and 150 Hz increased mechanical (left paw; P < 0.01) and thermal thresholds in 6-hydroxydopamine-lesioned rats (hot-plate test: 150 Hz, P < 0.05, 50 Hz, P < 0.01). Interestingly, during von Frey testing, low-frequency stimulation provided a more robust improvement in some 6OHDA lesioned rats, while in others, the magnitude of improvement on high-frequency stimulation was greater. This study shows that subthalamic deep brain stimulation improves mechanical allodynia and thermal hyperalgesia in 6-hydroxydopamine-lesioned animals at both high and low frequencies. Furthermore, we suggest considering using low-frequency stimulation when treating Parkinson's patients where pain remains the predominant complaint.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Hiperalgesia/terapia , Umbral del Dolor/fisiología , Núcleo Subtalámico/fisiología , Adrenérgicos/toxicidad , Animales , Modelos Animales de Enfermedad , Lateralidad Funcional , Hiperalgesia/etiología , Masculino , Oxidopamina/toxicidad , Umbral del Dolor/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/terapia , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Estadísticas no Paramétricas , Tirosina 3-Monooxigenasa/metabolismo
10.
Stereotact Funct Neurosurg ; 93(3): 206-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25895600

RESUMEN

BACKGROUND: Up to 60% of Parkinson's disease (PD) patients suffer from low back pain (LBP) during the course of their disease. How LBP affects daily functional status and how to manage this aspect of PD has not been adequately explored. METHODS: We examined 16 patients undergoing bilateral subthalamic nucleus deep brain stimulation (STN DBS) who met the inclusion criteria for moderate disability from LBP, as classified by the Oswestry Low Back Pain Disability Index (OLBPD). RESULTS: Thirteen of 16 patients had attempted additional treatments for LBP, including medical management, massage, chiropractic, epidural steroid injections and/or surgery, with minimal relief. Following DBS, there was a significant improvement in the OLBPD at both the 6-month and 1-year time points (p < 0.02, p < 0.005, respectively). A mean improvement of 31.7% on the OLBPD score was noted. The Visual Analogue Scale (VAS) similarly decreased significantly at 1 year (p = 0.015). There was no correlation between the OLBPD score and other measures, including the Unified Parkinson's Disease Rating Scale (UPDRS), age and other nonmotor symptoms. CONCLUSION: Given the prevalent yet undertreated disability associated with LBP in PD, these results are novel in that they show that STN DBS has a significant positive effect on disability associated with LBP.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Personas con Discapacidad/rehabilitación , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/terapia , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Adulto , Anciano , Femenino , Humanos , Dolor de la Región Lumbar/diagnóstico , Masculino , Persona de Mediana Edad , Dimensión del Dolor/métodos , Enfermedad de Parkinson/diagnóstico , Resultado del Tratamiento
11.
Stereotact Funct Neurosurg ; 93(4): 265-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26066569

RESUMEN

BACKGROUND: At least 14% of Parkinson disease (PD) patients develop impulse control disorders (ICDs). The pathophysiology behind these behaviors and the impact of deep brain stimulation in a real-life setting remain unclear. OBJECTIVES: We prospectively examined the impact of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on ICDs in PD patients, as well as the relationship between impaired sensorimotor gaiting and impulsivity. METHODS: Patients undergoing bilateral STN-DBS were assessed for ICDs preoperatively and 1-year postoperatively using a validated questionnaire (QUIP-RS). A subset of patients completed the Balloon Analogue Risk Task (BART) and auditory prepulse inhibition (PPI) testing. RESULTS: Analysis revealed 12 patients had an improvement in score assessing ICDs ('good responders'; p = 0.006) while 4 had a worse or stable score ('poor responders'; p > 0.05). Good responders further exemplified a significant decrease in hypersexual behavior (p = 0.005) and binge eating (p = 0.01). Impaired PPI responses also significantly correlated with impulsivity in BART (r = -0.72, p = 0.044). DISCUSSION: Following bilateral STN-DBS, 75% of our cohort had a reduction in ICDs, thus suggesting deep brain stimulation effectively manages ICDs in PD. The role of impaired PPI in predisposition to ICDs in PD warrants further investigation.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Disruptivos, del Control de Impulso y de la Conducta/terapia , Conducta Impulsiva/fisiología , Enfermedad de Parkinson/terapia , Inhibición Prepulso/fisiología , Adulto , Anciano , Antiparkinsonianos/uso terapéutico , Terapia Combinada , Susceptibilidad a Enfermedades , Trastornos Disruptivos, del Control de Impulso y de la Conducta/etiología , Trastornos Disruptivos, del Control de Impulso y de la Conducta/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Encuestas y Cuestionarios
12.
Proc Natl Acad Sci U S A ; 108(27): 11274-9, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690381

RESUMEN

Anoxic insults cause hyperexcitability and cell death in mammalian neurons. Conversely, in anoxia-tolerant turtle brain, spontaneous electrical activity is suppressed by anoxia (i.e., spike arrest; SA) and cell death does not occur. The mechanism(s) of SA is unknown but likely involves GABAergic synaptic transmission, because GABA concentration increases dramatically in anoxic turtle brain. We investigated this possibility in turtle cortical neurons exposed to anoxia and/or GABA(A/B) receptor (GABAR) modulators. Anoxia increased endogenous slow phasic GABAergic activity, and both anoxia and GABA reversibly induced SA by increasing GABA(A)R-mediated postsynaptic activity and Cl(-) conductance, which eliminated the Cl(-) driving force by depolarizing membrane potential (∼8 mV) to GABA receptor reversal potential (∼-81 mV), and dampened excitatory potentials via shunting inhibition. In addition, both anoxia and GABA decreased excitatory postsynaptic activity, likely via GABA(B)R-mediated inhibition of presynaptic glutamate release. In combination, these mechanisms increased the stimulation required to elicit an action potential >20-fold, and excitatory activity decreased >70% despite membrane potential depolarization. In contrast, anoxic neurons cotreated with GABA(A+B)R antagonists underwent seizure-like events, deleterious Ca(2+) influx, and cell death, a phenotype consistent with excitotoxic cell death in anoxic mammalian brain. We conclude that increased endogenous GABA release during anoxia mediates SA by activating an inhibitory postsynaptic shunt and inhibiting presynaptic glutamate release. This represents a natural adaptive mechanism in which to explore strategies to protect mammalian brain from low-oxygen insults.


Asunto(s)
Hipoxia Encefálica/fisiopatología , Receptores de GABA-A/fisiología , Receptores de GABA-B/fisiología , Tortugas/fisiología , Potenciales de Acción , Adaptación Fisiológica , Animales , Fenómenos Electrofisiológicos , Glutamina/fisiología , Potenciales de la Membrana , Neuronas/fisiología , Transducción de Señal , Ácido gamma-Aminobutírico/fisiología
13.
bioRxiv ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39211226

RESUMEN

Spinocerebellar ataxias (SCAs) are a genetically heterogenous group of devastating neurodegenerative conditions for which clinical care currently focuses on managing symptoms. Across these diseases there is an unmet need for therapies that address underlying disease mechanisms. We utilised the shared CAG repeat expansion mutation causative for a large subgroup of SCAs, to develop a novel disease-gene independent and mechanism agnostic small molecule screening approach to identify compounds with therapeutic potential across multiple SCAs. Using this approach, we identified the FDA approved microtubule inhibitor Colchicine and a novel CAG-repeat binding compound that reduce expression of disease associated transcripts across SCA1, 3 and 7 patient derived fibroblast lines and the Atxn1 154Q/2Q SCA1 mouse model in a repeat selective manner. Furthermore, our lead candidate rescues dysregulated alternative splicing in Atxn1 154Q/2Q mice. This work provides the first example of small molecules capable of targeting the underlying mechanism of disease across multiple CAG SCAs.

14.
J Neurosci ; 32(7): 2499-512, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396423

RESUMEN

How the brain transitions into a seizure is poorly understood. Recurrent seizure-like events (SLEs) in low-Mg2+/ high-K+ perfusate were measured in the CA3 region of the intact mouse hippocampus. The SLE was divided into a "preictal phase," which abruptly turns into a higher frequency "ictal" phase. Blockade of GABA(A) receptors shortened the preictal phase, abolished interictal bursts, and attenuated the slow preictal depolarization, with no effect on the ictal duration, whereas SLEs were blocked by glutamate receptor blockade. In CA3 pyramidal cells and stratum oriens non-fast-spiking and fast-spiking interneurons, recurrent GABAergic IPSCs predominated interictally and during the early preictal phase, synchronous with extracellularly measured recurrent field potentials (FPs). These IPSCs then decreased to zero or reversed polarity by the onset of the higher-frequency ictus. However, postsynaptic muscimol-evoked GABA(A) responses remained intact. Simultaneously, EPSCs synchronous with the FPs markedly increased to a maximum at the ictal onset. The reversal potential of the compound postsynaptic currents (combined simultaneous EPSCs and IPSCs) became markedly depolarized during the preictal phase, whereas the muscimol-evoked GABA(A) reversal potential remained unchanged. During the late preictal phase, interneuronal excitability was high, but IPSCs, evoked by local stimulation, or osmotically by hypertonic sucrose application, were diminished, disappearing at the ictal onset. We conclude that the interictal and early preictal states are dominated by GABAergic activity, with the onset of the ictus heralded by exhaustion of presynaptic release of GABA, and unopposed increased glutamatergic responses.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Terminales Presinápticos/metabolismo , Convulsiones/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Región CA3 Hipocampal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Muscimol/farmacología , Terminales Presinápticos/efectos de los fármacos , Convulsiones/fisiopatología , Ácido gamma-Aminobutírico/deficiencia
15.
J Neurophysiol ; 109(2): 363-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23076106

RESUMEN

Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.


Asunto(s)
Estimulación Encefálica Profunda , Hipocinesia/terapia , Enfermedad de Parkinson Secundaria/terapia , Sustancia Negra/fisiopatología , Animales , Antipsicóticos/uso terapéutico , Ritmo beta , Miembro Anterior/inervación , Miembro Anterior/fisiopatología , Masculino , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/fisiopatología , Ratas , Ratas Sprague-Dawley , Reserpina/uso terapéutico , Tálamo/fisiopatología
16.
Neurobiol Dis ; 52: 128-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23220620

RESUMEN

Seizures occur in the basal ganglia (BG) of epileptic patients and in animal models of epilepsy, but there is relatively little known about how these events are gated and/or propagated through this structure. Here, we present and characterize a model of in vitro seizure-like events (SLEs) in the striatum by applying chemostimulants to brain slices from young rat pups. We found that bath perfusion of artificial cerebral spinal fluid (aCSF) containing 0.25 mM MgCl(2), 5mM KCl and 100 µM 4-aminopyridine (LM/HK/4AP) elicited recurrent hyper-excitability in striatal medium spiny neurons (MSNs) in the form of paroxysmal depolarization shifts (PDSs) with an amplitude of 27.8 ± 2.1 mV and a duration of 29.4 ± 3.7s. PDSs coincided with SLEs in the striatal network with an amplitude of 106.5 ± 11.3 µV, duration of 23.6 ± 3.2 s, and a spiking frequency of 7.9 ± 1.3 Hz. Notably, chemostimulant-induced MSN PDSs were predominantly observed at earlier ages (P7-11), whereas occurrence of MSN PDSs declined to 50% by P12 and were no longer noted after P14; antagonism of the cannabinoid receptor (CB1) with 10 µM LY 320135 along with perfusion of LM/HK/4AP in older animals (P14-15) was unable to elicit MSN PDSs and SLEs. PDSs and SLEs were blocked with 60 µM 2-amino-5-phosphonopentanoate (APV), an N-methyl-d-aspartate receptor (NMDAR) blocker, or with traditional anticonvulsants such as 100 µM phenytoin or 50 µM carbamazepine. Conversely, blockade of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptors (AMPARs) with 10 µM CNQX or T- and L-type Ca(2+) channels with 50 µM NiCl(2) or 50 µM nimodipine, respectively, did not significantly change MSN PDS and SLE amplitudes, durations and frequencies seen with LM/HK/4AP treatment alone. Striatal SLEs were driven by MSN hyper-excitability and synchrony since neither the presence of 1µM scopolamine, a muscarinic acetylcholine (ACh) receptor inhibitor, nor selective inhibition of fast-spiking interneurons (FSIs) with 50µM IEM1460 had any significant effect on MSN PDSs and SLEs. Next, we physically isolated the striatum from cortical and thalamic input and found that the striatum was intrinsically capable of manifesting NMDAR-dependent SLEs. Altogether, the present study is the first to deconstruct how SLEs can form in the striatum by examining how MSN activity coincides with SLEs. It also highlights a previously unrecognized potential for the striatum to manifest SLEs in vitro, without involving the cortex and thalamus. From these findings, further hypotheses can be developed for studying the BG's role in seizure generation and propagation, which may lead to novel pharmacological targets for the treatment of epilepsy.


Asunto(s)
Cuerpo Estriado/fisiopatología , Red Nerviosa/fisiopatología , Neuronas/fisiología , Convulsiones/fisiopatología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Anticonvulsivantes/farmacología , Benzofuranos/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Carbamazepina/farmacología , Cuerpo Estriado/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Fenitoína/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores
17.
Eur J Neurosci ; 37(2): 231-41, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23121286

RESUMEN

The mechanism of high-frequency stimulation used in deep brain stimulation (DBS) for Parkinson's disease (PD) has not been completely elucidated. Previously, high-frequency stimulation of the rat entopeduncular nucleus, a basal ganglia output nucleus, elicited an increase in [K(+)](e) to 18 mm, in vitro. In this study, we assessed whether elevated K(+) can elicit DBS-like therapeutic effects in hemiparkinsonian rats by employing the limb-use asymmetry test and the self-adjusting stepping test. We then identified how these effects were meditated with in-vivo and in-vitro electrophysiology. Forelimb akinesia improved in hemiparkinsonian rats undergoing both tests after 20 mm KCl injection into the substantia nigra pars reticulata (SNr) or the subthalamic nucleus. In the SNr, neuronal spiking activity decreased from 38.2 ± 1.2 to 14.6 ± 1.6 Hz and attenuated SNr beta-frequency (12-30 Hz) oscillations after K(+) treatment. These oscillations are commonly associated with akinesia/bradykinesia in patients with PD and animal models of PD. Pressure ejection of 20 mm KCl onto SNr neurons in vitro caused a depolarisation block and sustained quiescence of SNr activity. In conclusion, our data showed that elevated K(+) injection into the hemiparkinsonian rat SNr improved forelimb akinesia, which coincided with a decrease in SNr neuronal spiking activity and desynchronised activity in SNr beta frequency, and subsequently an overall increase in ventral medial thalamic neuronal activity. Moreover, these findings also suggest that elevated K(+) may provide an ionic mechanism that can contribute to the therapeutic effects of DBS for the motor treatment of advanced PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson Secundaria/terapia , Potasio/farmacología , Animales , Ritmo beta/efectos de los fármacos , Miembro Anterior , Hipocinesia/tratamiento farmacológico , Masculino , Actividad Motora/efectos de los fármacos , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/fisiopatología , Potasio/uso terapéutico , Cloruro de Potasio/uso terapéutico , Ratas , Ratas Sprague-Dawley , Sustancia Negra/fisiopatología , Núcleo Subtalámico/fisiopatología
18.
Neuroscience ; 521: 1-19, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116741

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ratas , Masculino , Animales , Dopamina , Receptores Dopaminérgicos , Cerebelo/metabolismo , Oxidopamina , Modelos Animales de Enfermedad
19.
Neurosci Lett ; 789: 136882, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152743

RESUMEN

BACKGROUND: Non-invasive, external low intensity focused ultrasound (liFUS) offers promise for treating neuropathic pain when applied to the dorsal root ganglion (DRG). OBJECTIVE: We examine how external liFUS treatment applied to the L5 DRG affects neuronal changes in single-unit activity from the primary somatosensory cortex (SI) and anterior cingulate cortex (ACC) in a common peroneal nerve injury (CPNI) rodent model. METHODS: Male Sprague Dawley rats were divided into two cohorts: CPNI liFUS and CPNI sham liFUS. Baseline single-unit activity (SUA) recordings were taken 20 min prior to treatment and for 4 h post treatment in 20 min intervals, then analyzed for frequency and compared to baseline. Recordings from the SI and ACC were separated into pyramidal and interneurons based on waveform and principal component analysis. RESULTS: Following CPNI surgery, all rats (n = 30) displayed a significant increase in mechanical sensitivity. In CPNI liFUS rats, there was a significant increase in pyramidal neuron spike frequency in the SI region compared to the CPNI sham liFUS animals beginning at 120 min following liFUS treatment (p < 0.05). In the ACC, liFUS significantly attenuated interneuron firing beginning at 80 min after liFUS treatment (p < 0.05). CONCLUSION: We demonstrate that liFUS changed neuronal spiking in the SI and ACC regions 80 and 120 min after treatment, respectively, which may in part correlate with improved sensory thresholds. This may represent a mechanism of action how liFUS attenuates neuropathic pain. Understanding the impact of liFUS on pain circuits will help advance the use of liFUS as a non-invasive neuromodulation option.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Masculino , Ratas , Giro del Cíngulo , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/terapia , Nervio Peroneo , Ratas Sprague-Dawley
20.
Nat Biomed Eng ; 6(6): 683-705, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361935

RESUMEN

Peripheral neurons that sense glucose relay signals of glucose availability to integrative clusters of neurons in the brain. However, the roles of such signalling pathways in the maintenance of glucose homoeostasis and their contribution to disease are unknown. Here we show that the selective activation of the nerve plexus of the hepatic portal system via peripheral focused ultrasound stimulation (pFUS) improves glucose homoeostasis in mice and rats with insulin-resistant diabetes and in swine subject to hyperinsulinemic-euglycaemic clamps. pFUS modulated the activity of sensory projections to the hypothalamus, altered the concentrations of metabolism-regulating neurotransmitters, and enhanced glucose tolerance and utilization in the three species, whereas physical transection or chemical blocking of the liver-brain nerve pathway abolished the effect of pFUS on glucose tolerance. Longitudinal multi-omic profiling of metabolic tissues from the treated animals confirmed pFUS-induced modifications of key metabolic functions in liver, pancreas, muscle, adipose, kidney and intestinal tissues. Non-invasive ultrasound activation of afferent autonomic nerves may represent a non-pharmacologic therapy for the restoration of glucose homoeostasis in type-2 diabetes and other metabolic diseases.


Asunto(s)
Diabetes Mellitus Experimental , Glucosa , Animales , Diabetes Mellitus Experimental/terapia , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones , Ratas , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA