Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 486-504, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776516

RESUMEN

The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.


Asunto(s)
Empalme Alternativo , Atrofias Olivopontocerebelosas , Ataxias Espinocerebelosas , Animales , Ratones , Empalme Alternativo/genética , Cerebelo , Mutación , Progresión de la Enfermedad , Expansión de Repetición de Trinucleótido
2.
Exp Brain Res ; 242(2): 321-336, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059986

RESUMEN

Depression is a common non-motor symptom in Parkinson's disease (PD) that includes anhedonia and impacts quality of life but is not effectively treated with conventional antidepressants clinically. Vagus nerve stimulation improves treatment-resistant depression in the general population, but research about its antidepressant efficacy in PD is limited. Here, we administered peripheral non-invasive focused ultrasound to hemiparkinsonian ('PD') and non-parkinsonian (sham) rats to mimic vagus nerve stimulation and assessed its antidepressant-like efficacy. Following 6-hydroxydopamine (6-OHDA) lesion, akinesia-like immobility was assessed in the limb-use asymmetry test, and despair- and anhedonic-like behaviors were evaluated in the forced swim test and sucrose preference test, respectively. After, tyrosine hydroxylase immuno-staining was employed to visualize and quantify dopaminergic degeneration in the substantia nigra pars compacta, ventral tegmental area, and striatum. We found that PD rats exhibited akinesia-like immobility and > 90% reduction in tyrosine hydroxylase immuno-staining ipsilateral to the lesioned side. PD rats also demonstrated anhedonic-like behavior in the sucrose preference test compared to sham rats. No 6-OHDA lesion effect on immobility in the forced swim test limited conclusions about the efficacy of ultrasound on despair-like behavior. However, ultrasound improved anhedonic-like behavior in PD rats and this efficacy was sustained through the end of the 1-week recovery period. The greatest number of animals demonstrating increased sucrose preference was in the PD group receiving ultrasound. Our findings here are the first to posit that peripheral non-invasive focused ultrasound to the celiac plexus may improve anhedonia in PD with further investigation needed to reveal its potential for clinical applicability.


Asunto(s)
Anhedonia , Enfermedad de Parkinson , Humanos , Ratas , Animales , Anhedonia/fisiología , Ratas Wistar , Tirosina 3-Monooxigenasa , Calidad de Vida , Enfermedad de Parkinson/patología , Oxidopamina , Antidepresivos , Sacarosa , Modelos Animales de Enfermedad
3.
J Neuroinflammation ; 18(1): 152, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229727

RESUMEN

BACKGROUND: The immune pathways in Alzheimer's disease (AD) remain incompletely understood. Our recent study indicates that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the brain barriers of aged mice and that their activation alleviates aging-associated cognitive decline. The regulation and function of ILC2 in AD, however, remain unknown. METHODS: In this study, we examined the numbers and functional capability of ILC2 from the triple transgenic AD mice (3xTg-AD) and control wild-type mice. We investigated the effects of treatment with IL-5, a cytokine produced by ILC2, on the cognitive function of 3xTg-AD mice. RESULTS: We demonstrate that brain-associated ILC2 are numerically and functionally defective in the triple transgenic AD mouse model (3xTg-AD). The numbers of brain-associated ILC2 were greatly reduced in 7-month-old 3xTg-AD mice of both sexes, compared to those in age- and sex-matched control wild-type mice. The remaining ILC2 in 3xTg-AD mice failed to efficiently produce the type 2 cytokine IL-5 but gained the capability to express a number of proinflammatory genes. Administration of IL-5, a cytokine produced by ILC2, transiently improved spatial recognition and learning in 3xTg-AD mice. CONCLUSION: Our results collectively indicate that numerical and functional deficiency of ILC2 might contribute to the cognitive impairment of 3xTg-AD mice.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Linfocitos/inmunología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
4.
Exp Physiol ; 106(4): 1038-1060, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33512049

RESUMEN

NEW FINDINGS: What is the central question of this study? Does peripheral non-invasive focused ultrasound targeted to the celiac plexus improve inflammatory bowel disease? What is the main finding and its importance? Peripheral non-invasive focused ultrasound targeted to the celiac plexus in a rat model of ulcerative colitis improved stool consistency and reduced stool bloodiness, which coincided with a longer and healthier colon than in animals without focused ultrasound treatment. The findings suggest that this novel neuromodulatory technology could serve as a plausible therapeutic approach for improving symptoms of inflammatory bowel disease. ABSTRACT: Individuals suffering from inflammatory bowel disease (IBD) experience significantly diminished quality of life. Here, we aim to stimulate the celiac plexus with non-invasive peripheral focused ultrasound (FUS) to modulate the enteric cholinergic anti-inflammatory pathway. This approach may have clinical utility as an efficacious IBD treatment given the non-invasive and targeted nature of this therapy. We employed the dextran sodium sulfate (DSS) model of colitis, administering lower (5%) and higher (7%) doses to rats in drinking water. FUS on the celiac plexus administered twice a day for 12 consecutive days to rats with severe IBD improved stool consistency scores from 2.2 ± 1 to 1.0 ± 0.0 with peak efficacy on day 5 and maximum reduction in gross bleeding scores from 1.8 ± 0.8 to 0.8 ± 0.8 on day 6. Similar improvements were seen in animals in the low dose DSS group, who received FUS only once daily for 12 days. Moreover, animals in the high dose DSS group receiving FUS twice daily maintained colon length (17.7 ± 2.5 cm), while rats drinking DSS without FUS exhibited marked damage and shortening of the colon (13.8 ± 0.6 cm) as expected. Inflammatory cytokines such as interleukin (IL)-1ß, IL-6, IL-17, tumour necrosis factor-α and interferon-γ were reduced with DSS but coincided with control levels after FUS, which is plausibly due to a loss of colon crypts in the former and healthier crypts in the latter. Lastly, overall, these results suggest non-invasive FUS of peripheral ganglion can deliver precision therapy to improve IBD symptomology.


Asunto(s)
Plexo Celíaco , Colitis , Enfermedades Inflamatorias del Intestino , Animales , Plexo Celíaco/metabolismo , Plexo Celíaco/patología , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Sulfato de Dextran/uso terapéutico , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Ratas
5.
Neuromodulation ; 23(4): 515-524, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32369255

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is a well-accepted treatment of Parkinson's disease (PD). Motor phenotypes include tremor-dominant (TD), akinesia-rigidity (AR), and postural instability gait disorder (PIGD). The mechanism of action in how DBS modulates motor symptom relief remains unknown. OBJECTIVE: Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to determine whether the functional activity varies in response to DBS depending on PD phenotypes. MATERIALS AND METHODS: Subjects underwent an fMRI scan with DBS cycling ON and OFF. The effects of DBS cycling on BOLD activation in each phenotype were documented through voxel-wise analysis. For each region of interest, ANOVAs were performed using T-values and covariate analyses were conducted. Further, a correlation analysis was performed comparing stimulation settings to T-values. Lastly, T-values of subjects with motor improvement were compared to those who worsened. RESULTS: As a group, BOLD activation with DBS-ON resulted in activation in the motor thalamus (p < 0.01) and globus pallidus externa (p < 0.01). AR patients had more activation in the supplementary motor area (SMA) compared to PIGD (p < 0.01) and TD cohorts (p < 0.01). Further, the AR cohort had more activation in primary motor cortex (MI) compared to the TD cohort (p = 0.02). Implanted nuclei (p = 0.01) and phenotype (p = <0.01) affected activity in MI and phenotype alone affected SMA activity (p = <0.01). A positive correlation was seen between thalamic activation and pulse-width (p = 0.03) and between caudate and total electrical energy delivered (p = 0.04). CONCLUSIONS: These data suggest that DBS modulates network activity differently based on patient motor phenotype. Improved understanding of these differences may further our knowledge about the mechanisms of DBS action on PD motor symptoms and to optimize treatment.


Asunto(s)
Encéfalo/fisiopatología , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Anciano , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fenotipo
6.
Neuromodulation ; 20(5): 471-477, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28493348

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN DBS) is an established treatment in Parkinson's disease (PD). We investigate the effect of eye opening on neuronal activity and local field potentials (LFPs) in the STN. METHODS: We prospectively enrolled 25 PD patients undergoing STN DBS in our institution. During DBS, single-unit activity (SUA) and LFPs were measured when eyes were open and closed. As movement is known to result in changes in LFPs, we tested response to eye opening in the presence and absence of movement. RESULTS: Neither eye state nor arm movement has a significant influence on SUA recordings. There is a statistically significant interaction between eye state and arm movement (p < 0.05). In the presence of movement, STN SUA increase when eyes open (p < 0.05). When eyes are closed, STN SUA decrease with movement (p < 0.05). STN theta LFP oscillations decrease when eyes are open compared to closed, irrespective of movement status (p < 0.05). DISCUSSION: STN activity is influenced by eye state and arm movement. It is unclear whether this is attributed to a change in the STN's role in oculomotor control or from a change in attentional state. Understanding how physiologic normal activity alters neural activity is critical for the optimization of DBS therapy, particularly in closed-loop neuromodulation.


Asunto(s)
Potenciales de Acción/fisiología , Estimulación Encefálica Profunda/métodos , Movimientos Oculares/fisiología , Enfermedad de Parkinson/cirugía , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Estudios Prospectivos
7.
Neuromodulation ; 19(7): 698-707, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27284636

RESUMEN

BACKGROUND: Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). OBJECTIVE: In this study, we examined how single unit and LFP oscillatory activity in the basal ganglia are impacted by mechanical and thermal sensory stimuli and explored their role in pain modulation. METHODS: We assessed changes in LFPs and SUAs in the subthalamic nucleus (STN), globus pallidus interna (Gpi), and globus pallidus externa (Gpe) following exposure with mechanical or thermal stimuli. Sensory thresholds were determined pre-operatively using quantitative sensory testing. Based on these data, patients were exposed to innocuous and noxious mechanical, pressure, and thermal stimuli at individualized thresholds. RESULTS: In the STN, LFP alpha oscillatory activity and SUA increased in response to innocuous mechanical stimuli; SUA further increased in response to noxious mechanical, noxious pressure, and noxious thermal stimuli (p < 0.05). In the Gpe, LFP low betaactivity and SUA increased with noxious thermal stimuli; SUA also increased in response to innocuous thermal stimuli (p < 0.05). In the Gpi, innocuous thermal stimuli increased LFP gammaactivity; noxious pressure stimuli decreased low betaactivity; SUA increased in response to noxious thermal stimuli (p < 0.05). DISCUSSION: Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios Basales/citología , Potenciales Evocados Somatosensoriales/fisiología , Neuronas/fisiología , Enfermedad de Parkinson , Anciano , Anciano de 80 o más Años , Electroencefalografía , Femenino , Globo Pálido/fisiología , Humanos , Masculino , Microelectrodos , Persona de Mediana Edad , Vías Nerviosas/fisiología , Dolor/etiología , Dolor/fisiopatología , Enfermedad de Parkinson/terapia , Estimulación Física/efectos adversos , Núcleo Subtalámico/fisiología , Temperatura
8.
Eur J Neurosci ; 42(4): 2061-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26082992

RESUMEN

Chronic pain is a major complaint for up to 85% of Parkinson's disease patients; however, it often not identified as a symptom of Parkinson's disease. Adequate treatment of motor symptoms often provides analgesic effects in Parkinson's patients but how this occurs remains unclear. Studies have shown both Parkinson's patients and 6-hydroxydopamine-lesioned rats exhibit decreased sensory thresholds. In humans, some show improvements in these deficits after subthalamic deep brain stimulation, while others report no change. Differing methods of testing and response criteria may explain these varying results. We examined this effect in 6-hydroxydopamine-lesioned rats. Sprague-Dawley rats were unilaterally implanted with subthalamic stimulating electrodes in the lesioned right hemisphere and sensory thresholds were tested using von Frey, tail-flick and hot-plate tests. Tests were done during and off subthalamic stimulation at 50 and 150 Hz to assess its effects on sensory thresholds. The 6-hydroxydopamine-lesioned animals exhibited lower mechanical (left paw, P < 0.01) and thermal thresholds than shams (hot plate, P < 0.05). Both 50 and 150 Hz increased mechanical (left paw; P < 0.01) and thermal thresholds in 6-hydroxydopamine-lesioned rats (hot-plate test: 150 Hz, P < 0.05, 50 Hz, P < 0.01). Interestingly, during von Frey testing, low-frequency stimulation provided a more robust improvement in some 6OHDA lesioned rats, while in others, the magnitude of improvement on high-frequency stimulation was greater. This study shows that subthalamic deep brain stimulation improves mechanical allodynia and thermal hyperalgesia in 6-hydroxydopamine-lesioned animals at both high and low frequencies. Furthermore, we suggest considering using low-frequency stimulation when treating Parkinson's patients where pain remains the predominant complaint.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Hiperalgesia/terapia , Umbral del Dolor/fisiología , Núcleo Subtalámico/fisiología , Adrenérgicos/toxicidad , Animales , Modelos Animales de Enfermedad , Lateralidad Funcional , Hiperalgesia/etiología , Masculino , Oxidopamina/toxicidad , Umbral del Dolor/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/terapia , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Estadísticas no Paramétricas , Tirosina 3-Monooxigenasa/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(27): 11274-9, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690381

RESUMEN

Anoxic insults cause hyperexcitability and cell death in mammalian neurons. Conversely, in anoxia-tolerant turtle brain, spontaneous electrical activity is suppressed by anoxia (i.e., spike arrest; SA) and cell death does not occur. The mechanism(s) of SA is unknown but likely involves GABAergic synaptic transmission, because GABA concentration increases dramatically in anoxic turtle brain. We investigated this possibility in turtle cortical neurons exposed to anoxia and/or GABA(A/B) receptor (GABAR) modulators. Anoxia increased endogenous slow phasic GABAergic activity, and both anoxia and GABA reversibly induced SA by increasing GABA(A)R-mediated postsynaptic activity and Cl(-) conductance, which eliminated the Cl(-) driving force by depolarizing membrane potential (∼8 mV) to GABA receptor reversal potential (∼-81 mV), and dampened excitatory potentials via shunting inhibition. In addition, both anoxia and GABA decreased excitatory postsynaptic activity, likely via GABA(B)R-mediated inhibition of presynaptic glutamate release. In combination, these mechanisms increased the stimulation required to elicit an action potential >20-fold, and excitatory activity decreased >70% despite membrane potential depolarization. In contrast, anoxic neurons cotreated with GABA(A+B)R antagonists underwent seizure-like events, deleterious Ca(2+) influx, and cell death, a phenotype consistent with excitotoxic cell death in anoxic mammalian brain. We conclude that increased endogenous GABA release during anoxia mediates SA by activating an inhibitory postsynaptic shunt and inhibiting presynaptic glutamate release. This represents a natural adaptive mechanism in which to explore strategies to protect mammalian brain from low-oxygen insults.


Asunto(s)
Hipoxia Encefálica/fisiopatología , Receptores de GABA-A/fisiología , Receptores de GABA-B/fisiología , Tortugas/fisiología , Potenciales de Acción , Adaptación Fisiológica , Animales , Fenómenos Electrofisiológicos , Glutamina/fisiología , Potenciales de la Membrana , Neuronas/fisiología , Transducción de Señal , Ácido gamma-Aminobutírico/fisiología
10.
J Neurosci ; 32(7): 2499-512, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22396423

RESUMEN

How the brain transitions into a seizure is poorly understood. Recurrent seizure-like events (SLEs) in low-Mg2+/ high-K+ perfusate were measured in the CA3 region of the intact mouse hippocampus. The SLE was divided into a "preictal phase," which abruptly turns into a higher frequency "ictal" phase. Blockade of GABA(A) receptors shortened the preictal phase, abolished interictal bursts, and attenuated the slow preictal depolarization, with no effect on the ictal duration, whereas SLEs were blocked by glutamate receptor blockade. In CA3 pyramidal cells and stratum oriens non-fast-spiking and fast-spiking interneurons, recurrent GABAergic IPSCs predominated interictally and during the early preictal phase, synchronous with extracellularly measured recurrent field potentials (FPs). These IPSCs then decreased to zero or reversed polarity by the onset of the higher-frequency ictus. However, postsynaptic muscimol-evoked GABA(A) responses remained intact. Simultaneously, EPSCs synchronous with the FPs markedly increased to a maximum at the ictal onset. The reversal potential of the compound postsynaptic currents (combined simultaneous EPSCs and IPSCs) became markedly depolarized during the preictal phase, whereas the muscimol-evoked GABA(A) reversal potential remained unchanged. During the late preictal phase, interneuronal excitability was high, but IPSCs, evoked by local stimulation, or osmotically by hypertonic sucrose application, were diminished, disappearing at the ictal onset. We conclude that the interictal and early preictal states are dominated by GABAergic activity, with the onset of the ictus heralded by exhaustion of presynaptic release of GABA, and unopposed increased glutamatergic responses.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Terminales Presinápticos/metabolismo , Convulsiones/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Región CA3 Hipocampal/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Muscimol/farmacología , Terminales Presinápticos/efectos de los fármacos , Convulsiones/fisiopatología , Ácido gamma-Aminobutírico/deficiencia
11.
J Neurophysiol ; 109(2): 363-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23076106

RESUMEN

Deep brain stimulation (DBS) employing high-frequency stimulation (HFS) is commonly used in the globus pallidus interna (GPi) and the subthalamic nucleus (STN) for treating motor symptoms of patients with Parkinson's disease (PD). Although DBS improves motor function in most PD patients, disease progression and stimulation-induced nonmotor complications limit DBS in these areas. In this study, we assessed whether stimulation of the substantia nigra pars reticulata (SNr) improved motor function. Hemiparkinsonian rats predominantly touched with their unimpaired forepaw >90% of the time in the stepping and limb-use asymmetry tests. After SNr-HFS (150 Hz), rats touched equally with both forepaws, similar to naive and sham-lesioned rats. In vivo, SNr-HFS decreased beta oscillations (12-30 Hz) in the SNr of freely moving hemiparkinsonian rats and decreased SNr neuronal spiking activity from 28 ± 1.9 Hz before stimulation to 0.8 ± 1.9 Hz during DBS in anesthetized animals; also, neuronal spiking activity increased from 7 ± 1.6 to 18 ± 1.6 Hz in the ventromedial portion of the thalamus (VM), the primary SNr efferent. In addition, HFS of the SNr in brain slices from normal and reserpine-treated rat pups resulted in a depolarization block of SNr neuronal activity. We demonstrate improvement of forelimb akinesia with SNr-HFS and suggest that this motor effect may have resulted from the attenuation of SNr neuronal activity, decreased SNr beta oscillations, and increased activity of VM thalamic neurons, suggesting that the SNr may be a plausible DBS target for treating motor symptoms of DBS.


Asunto(s)
Estimulación Encefálica Profunda , Hipocinesia/terapia , Enfermedad de Parkinson Secundaria/terapia , Sustancia Negra/fisiopatología , Animales , Antipsicóticos/uso terapéutico , Ritmo beta , Miembro Anterior/inervación , Miembro Anterior/fisiopatología , Masculino , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/fisiopatología , Ratas , Ratas Sprague-Dawley , Reserpina/uso terapéutico , Tálamo/fisiopatología
12.
Eur J Neurosci ; 37(2): 231-41, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23121286

RESUMEN

The mechanism of high-frequency stimulation used in deep brain stimulation (DBS) for Parkinson's disease (PD) has not been completely elucidated. Previously, high-frequency stimulation of the rat entopeduncular nucleus, a basal ganglia output nucleus, elicited an increase in [K(+)](e) to 18 mm, in vitro. In this study, we assessed whether elevated K(+) can elicit DBS-like therapeutic effects in hemiparkinsonian rats by employing the limb-use asymmetry test and the self-adjusting stepping test. We then identified how these effects were meditated with in-vivo and in-vitro electrophysiology. Forelimb akinesia improved in hemiparkinsonian rats undergoing both tests after 20 mm KCl injection into the substantia nigra pars reticulata (SNr) or the subthalamic nucleus. In the SNr, neuronal spiking activity decreased from 38.2 ± 1.2 to 14.6 ± 1.6 Hz and attenuated SNr beta-frequency (12-30 Hz) oscillations after K(+) treatment. These oscillations are commonly associated with akinesia/bradykinesia in patients with PD and animal models of PD. Pressure ejection of 20 mm KCl onto SNr neurons in vitro caused a depolarisation block and sustained quiescence of SNr activity. In conclusion, our data showed that elevated K(+) injection into the hemiparkinsonian rat SNr improved forelimb akinesia, which coincided with a decrease in SNr neuronal spiking activity and desynchronised activity in SNr beta frequency, and subsequently an overall increase in ventral medial thalamic neuronal activity. Moreover, these findings also suggest that elevated K(+) may provide an ionic mechanism that can contribute to the therapeutic effects of DBS for the motor treatment of advanced PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson Secundaria/terapia , Potasio/farmacología , Animales , Ritmo beta/efectos de los fármacos , Miembro Anterior , Hipocinesia/tratamiento farmacológico , Masculino , Actividad Motora/efectos de los fármacos , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/fisiopatología , Potasio/uso terapéutico , Cloruro de Potasio/uso terapéutico , Ratas , Ratas Sprague-Dawley , Sustancia Negra/fisiopatología , Núcleo Subtalámico/fisiopatología
13.
Neuroscience ; 521: 1-19, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116741

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ratas , Masculino , Animales , Dopamina , Receptores Dopaminérgicos , Cerebelo/metabolismo , Oxidopamina , Modelos Animales de Enfermedad
14.
Neurosci Lett ; 789: 136882, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152743

RESUMEN

BACKGROUND: Non-invasive, external low intensity focused ultrasound (liFUS) offers promise for treating neuropathic pain when applied to the dorsal root ganglion (DRG). OBJECTIVE: We examine how external liFUS treatment applied to the L5 DRG affects neuronal changes in single-unit activity from the primary somatosensory cortex (SI) and anterior cingulate cortex (ACC) in a common peroneal nerve injury (CPNI) rodent model. METHODS: Male Sprague Dawley rats were divided into two cohorts: CPNI liFUS and CPNI sham liFUS. Baseline single-unit activity (SUA) recordings were taken 20 min prior to treatment and for 4 h post treatment in 20 min intervals, then analyzed for frequency and compared to baseline. Recordings from the SI and ACC were separated into pyramidal and interneurons based on waveform and principal component analysis. RESULTS: Following CPNI surgery, all rats (n = 30) displayed a significant increase in mechanical sensitivity. In CPNI liFUS rats, there was a significant increase in pyramidal neuron spike frequency in the SI region compared to the CPNI sham liFUS animals beginning at 120 min following liFUS treatment (p < 0.05). In the ACC, liFUS significantly attenuated interneuron firing beginning at 80 min after liFUS treatment (p < 0.05). CONCLUSION: We demonstrate that liFUS changed neuronal spiking in the SI and ACC regions 80 and 120 min after treatment, respectively, which may in part correlate with improved sensory thresholds. This may represent a mechanism of action how liFUS attenuates neuropathic pain. Understanding the impact of liFUS on pain circuits will help advance the use of liFUS as a non-invasive neuromodulation option.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Masculino , Ratas , Giro del Cíngulo , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/terapia , Nervio Peroneo , Ratas Sprague-Dawley
15.
Epilepsia ; 52(11): 2084-93, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21906050

RESUMEN

PURPOSE: We investigated whether RS-isovaline, a unique amino acid found in carbonaceous meteorites and presumed extraterrestrial, has anticonvulsant properties in rat hippocampal slices in vitro. METHODS: Extracellular recordings were obtained in the rat hippocampal CA1 pyramidal layer in two in vitro seizure models: perfusion of low (0.25 mm) Mg(2+) and high (5 mm) K(+) (LM/HK), or 100 µm 4-aminopyridine (4-AP). To investigate the underlying mechanisms of isovaline action, whole-cell recordings were obtained from CA1 pyramidal neurons and stratum oriens interneurons during 4-AP blockade of K(+) channels. KEY FINDINGS: Perfusion of LM/HK produced seizure-like events (SLEs) or stimulus-evoked primary afterdischarges (PADs) with amplitudes of 0.9 ± 0.1 mV lasting 80 ± 14 s. Application of isovaline (250 µm) for 20-30 min abolished SLEs and PADs or attenuated seizure amplitude and duration by 57.0 ± 9.0% and 57.0 ± 12.0%, respectively. Similar effects were seen with isovaline in the 4-AP seizure model. Isovaline alone increased interneuronal spontaneous spiking from 0.9 ± 0.3 to 3.2 ± 0.9 Hz, increased input resistance by 21.6 ± 8.1%, and depolarized the resting membrane potential by 8.0 ± 1.5 mV; no changes in the firing or electrical properties of pyramidal neurons were observed. Coapplication of 4-AP and isovaline increased interneuronal spontaneous spiking from 1.0 ± 0.6 to 2.6 ± 0.8 Hz, whereas pyramidal neuronal spiking activity decreased from 0.6 ± 0.4 to 0.2 ± 0.1 Hz. SIGNIFICANCE: Isovaline exhibited anticonvulsant properties in two hippocampal seizure models. This may lead to the development of a new class of anticonvulsants based on an unusual mechanism of action of this presumed extraterrestrial amino acid.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Hipocampo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Convulsiones/tratamiento farmacológico , Valina/uso terapéutico , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Convulsivantes/farmacología , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Interneuronas/fisiología , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
16.
Neuroreport ; 32(1): 61-65, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33196548

RESUMEN

Infantile spasms, also known as epileptic spasms during infancy, is an epileptic disorder of infancy and early childhood that is associated with developmental delay or regression, high mortality rate and is difficult to treat with conventional antiseizure medication. Previously, we reported that a unique amino acid called isovaline had potent anticonvulsive efficacy in the 4-aminopyridine and pilocarpine rat models of seizures. In this study, we examined whether isovaline possess therapeutic utility in a well-established rat model of infantile spasms which involves the pretreatment of a pregnant dam with betamethasone and subsequent induction of spasms with N-methyl-D-asparate (NMDA), a glutamate receptor agonist, in 15-day old pups. We treated seven of these pups with saline prior to administering NMDA and eight of these pups with isovaline (300 mg/kg) intraperitoneal (i.p.) prior to NMDA. Isovaline significantly reduced the number of full-body jumps from 18.1 ± 5.0 to 6.3 ± 1.8 and leg/arm/tail strains from 4.4 ± 1.6 to 1.1 ± 0.5. A trend in a reduction of body twitch was noted in rat pups administered isovaline (P = 0.05), but no significant difference was seen in NMDA-induced head nods (P = 0.221). In conclusion, our data demonstrate a potential for isovaline to attenuate an aggressive form of epilepsy that typically requires highly toxic medications to treat in children.


Asunto(s)
Espasmos Infantiles , Valina/farmacología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Ratas , Ratas Sprague-Dawley
17.
Neuroscience ; 460: 88-106, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33631218

RESUMEN

Deep brain stimulation (DBS) in Parkinson's disease (PD) alters neuronal function and network communication to improve motor symptoms. The subthalamic nucleus (STN) is the most common DBS target for PD, but some patients experience adverse effects on memory and cognition. Previously, we reported that DBS of the ventral anterior (VA) and ventrolateral (VL) nuclei of the thalamus and at the interface between the two (VA|VL), collectively VA-VL, relieved forelimb akinesia in the hemiparkinsonian 6-hydroxydopamine (6-OHDA) rat model. To determine the mechanism(s) underlying VA-VL DBS efficacy, we examined how motor cortical neurons respond to VA-VL DBS using single-unit recording electrodes in anesthetized 6-OHDA lesioned rats. VA-VL DBS increased spike frequencies of primary (M1) and secondary (M2) motor cortical pyramidal cells and M2, but not M1, interneurons. To explore the translational merits of VA-VL DBS, we compared the therapeutic window, rate of stimulation-induced dyskinesia onset, and effects on memory between VA-VL and STN DBS. VA-VL and STN DBS had comparable therapeutic windows, induced dyskinesia at similar rates in hemiparkinsonian rats, and adversely affected performance in the novel object recognition (NOR) test in cognitively normal and mildly impaired sham animals. Interestingly, a subset of sham rats with VA-VL implants showed severe cognitive deficits with DBS off. VA-VL DBS improved NOR test performance in these animals. We conclude that VA-VL DBS may exert its therapeutic effects by increasing pyramidal cell activity in the motor cortex and interneuron activity in the M2, with plausible potential to improve memory in PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Humanos , Oxidopamina/toxicidad , Enfermedad de Parkinson/terapia , Ratas , Tálamo
18.
Neuroscience ; 429: 264-272, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32001366

RESUMEN

Non-invasive treatment methods for neuropathic pain are lacking. We assess how modulatory low intensity focused ultrasound (liFUS) at the L5 dorsal root ganglion (DRG) affects behavioral responses and sensory nerve action potentials (SNAPs) in a common peroneal nerve injury (CPNI) model. Rats were assessed for mechanical and thermal responses using Von Frey filaments (VFF) and the hot plate test (HPT) following CPNI surgery. Testing was repeated 24 h after liFUS treatment. Significant increases in mechanical and thermal sensory thresholds were seen post-liFUS treatment, indicating a reduction in sensitivity to pain (p < 0.0001, p = 0.02, respectively). Animals who received CPNI surgery had significant increases in SNAP latencies compared to sham CPNI surgery animals (p = 0.0003) before liFUS treatment. LiFUS induced significant reductions in SNAP latency in both CPNI liFUS and sham CPNI liFUS cohorts, for up to 35 min post treatment. No changes were seen in SNAP amplitude and there was no evidence of neuronal degeneration 24 h after liFUS treatment, showing that liFUS did not damage the tissue being modulated. This is the first in vivo study of the impact of liFUS on peripheral nerve electrophysiology in a model of chronic pain. This study demonstrates the effects of liFUS on peripheral nerve electrophysiology in vivo. We found that external liFUS treatment results in transient decreased latency in common peroneal nerve (CPN) sensory nerve action potentials (SNAPs) with no change in signal amplitude.


Asunto(s)
Traumatismos de los Nervios Periféricos , Nervio Peroneo , Animales , Ganglios Espinales , Hiperalgesia , Ratas , Ratas Sprague-Dawley , Roedores
19.
Neurosci Lett ; 739: 135443, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33141067

RESUMEN

Parkinson's Disease (PD) patients undergoing subthalamic nucleus deep brain stimulation (STN-DBS) therapy can reduce levodopa equivalent daily dose (LEDD) by approximately 50 %, leading to less symptoms of dyskinesia. The underlying mechanisms contributing to this reduction remain unclear, but studies posit that STN-DBS may increase striatal dopamine levels by exciting remaining dopaminergic cells in the substantia nigra pars compacta (SNc). Yet, no direct evidence has shown how SNc neuronal activity responds during STN-DBS in PD. Here, we use a hemiparkinsonian rat model of PD and employ in vivo electrophysiology to examine the effects of STN-DBS on SNc neuronal spiking activity. We found that 43 % of SNc neurons in naïve rats reduced their spiking frequency to 29.8 ± 18.5 % of baseline (p = 0.010). In hemiparkinsonian rats, a higher number of SNc neurons (88 % of recorded cells) decreased spiking frequency to 61.6 ± 4.4 % of baseline (p = 0.030). We also noted that 43 % of SNc neurons in naïve rats increased spiking frequency from 0.2 ± 0.0 Hz at baseline to 1.8 ± 0.3 Hz during stimulation, but only 1 SNc neuron from 1 hemiparkinsonian rat increased its spiking frequency by 12 % during STN-DBS. Overall, STN-DBS decreased spike frequency in the majority of recorded SNc neurons in a rat model of PD. Less homogenous responsiveness in directionality in SNc neurons during STN-DBS was seen in naive rats. Plausibly, poly-synaptic network signaling from STN-DBS may underlie these changes in SNc spike frequencies.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Porción Compacta de la Sustancia Negra/fisiopatología , Núcleo Subtalámico/fisiopatología , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Masculino , Enfermedad de Parkinson/fisiopatología , Ratas Sprague-Dawley
20.
Brain Res ; 1715: 66-72, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30898672

RESUMEN

Chronic pain is the most common non-motor symptom among Parkinson's disease (PD) patients, with 1.85 million estimated to be in debilitating pain by 2030. Subthalamic deep brain stimulation (STN DBS) programmed for treating PD motor symptoms has also been shown to significantly improve pain scores. However, even though most patients' pain symptoms improve or disappear, 74% of patients treated develop new pain symptoms within 8 years. Previously we have shown that duloxetine and STN high frequency stimulation (HFS) significantly increase mechanical thresholds more than either alone. The current project specifically investigates the effects of gabapentin and morphine alone and with high (150 Hz; HFS) and low (50 Hz; LFS) frequency stimulation in the 6-hydroxydopamine rat model for PD. We found that HFS, LFS, gabapentin 15 mg/kg and morphine 1 mg/kg all independently improve von Frey (VF) thresholds. Neither drug augments the HFS response significantly. Morphine at 1 mg/kg showed a trend to increasing thresholds compared to LFS alone (p = 0.062). Interestingly, gabapentin significantly reduced (p = 0.019) the improved VF thresholds and Randall Selitto thresholds seen with LFS. Thus, though neither drug augments DBS, we found effects of both compounds independently increase VF thresholds, informing use of our model of chronic pain in PD. Gabapentin's reversal of LFS effects warrants further exploration.


Asunto(s)
Dolor Crónico/terapia , Umbral del Dolor/efectos de los fármacos , Núcleo Subtalámico/efectos de los fármacos , Animales , Estimulación Encefálica Profunda/métodos , Modelos Animales de Enfermedad , Gabapentina/farmacología , Masculino , Morfina/farmacología , Oxidopamina/farmacología , Enfermedad de Parkinson/terapia , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA