Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791399

RESUMEN

Oxylipins, the metabolites of polyunsaturated fatty acids, are vital in regulating cell proliferation and inflammation. Among these oxylipins, specialized pro-resolving mediators notably contribute to inflammation resolution. Previously, we showed that the specialized pro-resolving mediators isomer 11,17dihydroxy docosapentaenoic acid (11,17diHDoPE) can be synthesized in bacterial cells and exhibits anti-inflammatory effects in mammalian cells. This study investigates the in vivo impact of 11,17diHDoPE in mice exposed to particulate matter 10 (PM10). Our results indicate that 11,17diHDoPE significantly mitigates PM10-induced lung inflammation in mice, as evidenced by reduced pro-inflammatory cytokines and pulmonary inflammation-related gene expression. Metabolomic analysis reveals that 11,17diHDoPE modulates inflammation-related metabolites such as threonine, 2-keto gluconic acid, butanoic acid, and methyl oleate in lung tissues. In addition, 11,17diHDoPE upregulates the LA-derived oxylipin pathway and downregulates arachidonic acid- and docosahexaenoic acid-derived oxylipin pathways in serum. Correlation analyses between gene expression and metabolite changes suggest that 11,17diHDoPE alleviates inflammation by interfering with macrophage differentiation. These findings underscore the in vivo role of 11,17diHDoPE in reducing pulmonary inflammation, highlighting its potential as a therapeutic agent for respiratory diseases.


Asunto(s)
Antiinflamatorios , Ácidos Grasos Insaturados , Metaboloma , Material Particulado , Neumonía , Animales , Ratones , Metaboloma/efectos de los fármacos , Neumonía/metabolismo , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Material Particulado/toxicidad , Antiinflamatorios/farmacología , Ácidos Grasos Insaturados/metabolismo , Masculino , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Oxilipinas/metabolismo , Metabolómica/métodos , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
2.
Ecotoxicol Environ Saf ; 232: 113252, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104780

RESUMEN

11 S, 17S-dihydroxy 7,9,13,15,19 (Z,E,Z,E,Z)-docosapentaenoic acid (DoPE) is a derivative of docosapentaenoic acid, a specialized pro-resolving mediator of inflammation such as lipoxins, resolvins, maresins, and protectins. PM10 is a fine dust particle that induces oxidative stress, DNA damage, inflammation, aging, and cancer. The anti-inflammatory mechanism of DoPE, however, has not yet been elucidated. In these studies, we investigated whether DoPE has anti-inflammatory effects in human keratinocyte HaCaT cells. We demonstrated that DoPE suppressed PM10-induced expressions of IL-6 mRNA and protein in human HaCaT keratinocytes. We also investigated the modulating effects of DoPE on reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK). ROS production, extracellular signal regulated kinase (ERK) phosphorylation, and translocation of nuclear factor-kappa B (NF-kB) p65 and NF-kB activity were suppressed by DoPE in PM10-stimulated HaCaT cells. Collectively, our results demonstrated that DoPE inhibited IL-6 expression by reducing ROS generation, suppressing ERK phosphorylation, and inhibiting translocation of NF-kB p65 and NF-kB activity in PM10-stimulated HaCaT cells, suggesting that DoPE can be useful for the resolution of the inflammation caused by IL-6.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , FN-kappa B , Polvo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Grasos Insaturados , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinocitos , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232600

RESUMEN

Signal transducer and activation of transcription 5 (STAT5) is a key transcription factor that regulates various biological processes in mammalian development. Aberrant regulation of STAT5 has also been causally linked to many diseases, including cancers and immune-related diseases. Although persistent activation of STAT5 due to dysregulation of the signaling cascade has been reported to be associated with the progression of solid tumors and leukemia, various genomic mutations of STAT5 have also been found to cause a wide range of diseases. The present review comprehensively summarizes results of recent studies evaluating the intrinsic function of STAT5 and the link between STAT5 mutations and human diseases. This review also describes the types of disease models useful for investigating the mechanism underlying STAT5-driven disease progression. These findings provide basic knowledge for understanding the regulatory mechanisms of STAT5 and the progression of various diseases resulting from aberrant regulation of STAT5. Moreover, this review may provide insights needed to create optimal disease models that reflect human disease associated STAT5 mutations and to design gene therapies to correct STAT5 mutations.


Asunto(s)
Enfermedades del Sistema Inmune , Neoplasias , Animales , Genómica , Humanos , Enfermedades del Sistema Inmune/genética , Mamíferos/metabolismo , Mutación , Neoplasias/genética , Factor de Transcripción STAT5/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897807

RESUMEN

The current pandemic and the possible emergence of new viruses urgently require the rapid development of antiviral vaccines and therapeutics. However, some viruses or newly generated variants are difficult to culture in common cell types or exhibit low viral susceptibility in vivo, making it difficult to manufacture viral vector-based vaccines and understand host-virus interactions. To address these issues, we established new cell lines deficient in both type I and type II interferon responses, which are essential for host immunity and interference with virus replication. These cell lines were generated by developing an integrated CRISPR-Cas9 system that simultaneously expresses dual-guide RNA cassettes and Cas9 nuclease in a single plasmid. Using this highly efficient gene-editing system, we successfully established three cell lines starting from IFN-α/ß-deficient Vero cells, deleting the single interferon-gamma (IFNG) gene, the IFNG receptor 1 (IFNGR1) gene, or both genes. All cell lines clearly showed a decrease in IFN-γ-responsive antiviral gene expression and cytokine production. Moreover, production of IFN-γ-induced cytokines remained low, even after HSV-1 or HCoV-OC43 infection, while expression of the receptor responsible for viral entry increased. Ultimately, knockout of IFN-signaling genes in these cell lines promoted cytopathic effects and increased apoptosis after viral infection up to three-fold. These results indicate that our integrated CRISPR-Cas9-mediated IFNG- and IFNGR1-knockout cell lines promote virus replication and will be useful in viral studies used to design novel vaccines and therapies.


Asunto(s)
Sistemas CRISPR-Cas , Interferón gamma , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Interferón beta/farmacología , Interferón gamma/genética , Interferón gamma/farmacología , Receptores de Interferón , Células Vero , Replicación Viral/genética , Receptor de Interferón gamma
5.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232979

RESUMEN

Super-enhancers are large clusters of enhancers critical for cell-type-specific development. In a previous study, 440 mammary-specific super-enhancers, highly enriched for an active enhancer mark H3K27ac; a mediator MED1; and the mammary-enriched transcription factors ELF5, NFIB, STAT5A, and GR, were identified in the genome of the mammary epithelium of lactating mice. However, the triggering mechanism for mammary-specific super-enhancers and the molecular interactions between key transcription factors have not been clearly elucidated. In this study, we investigated in vivo protein-protein interactions between major transcription factors that activate mammary-specific super-enhancers. In mammary epithelial cells, ELF5 strongly interacted with NFIB while weakly interacting with STAT5A, and it showed modest interactions with MED1 and GR, a pattern unlike that in non-mammary cells. We further investigated the role of key transcription factors in the initial activation of the mammary-specific Wap super-enhancer, using CRISPR-Cas9 genome editing to introduce single or combined mutations at transcription factor binding sites in the pioneer enhancer of the Wap super-enhancer in mice. ELF5 and STAT5A played key roles in igniting Wap super-enhancer activity, but an intact transcription factor complex was required for the full function of the super-enhancer. Our study demonstrates that mammary-enriched transcription factors within a protein complex interact with different intensities and synergize to activate the Wap super-enhancer. These findings provide an important framework for understanding the regulation of cell-type-specific development.


Asunto(s)
Elementos de Facilitación Genéticos , Lactancia , Animales , Femenino , Edición Génica , Lactancia/genética , Ratones , Mutación , Unión Proteica
6.
Nucleic Acids Res ; 46(20): 10796-10809, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30285185

RESUMEN

The mammary luminal lineage relies on the common cytokine-sensing transcription factor STAT5 to establish super-enhancers during pregnancy and initiate a genetic program that activates milk production. As pups grow, the greatly increasing demand for milk requires progressive differentiation of mammary cells with advancing lactation. Here we investigate how persistent hormonal exposure during lactation shapes an evolving enhancer landscape and impacts the biology of mammary cells. Employing ChIP-seq, we uncover a changing transcription factor occupancy at mammary enhancers, suggesting that their activities evolve with advancing differentiation. Using mouse genetics, we demonstrate that the functions of individual enhancers within the Wap super-enhancer evolve as lactation progresses. Most profoundly, a seed enhancer, which is mandatory for the activation of the Wap super-enhancer during pregnancy, is not required during lactation, suggesting compensatory flexibility. Combinatorial deletions of structurally equivalent constituent enhancers demonstrated differentiation-specific compensatory activities during lactation. We also demonstrate that the Wap super-enhancer, which is built on STAT5 and other common transcription factors, retains its exquisite mammary specificity when placed into globally permissive chromatin, suggesting a limited role of chromatin in controlling cell specificity. Our studies unveil a previously unrecognized progressive enhancer landscape where structurally equivalent components serve unique and differentiation-specific functions.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Especificidad de Órganos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Femenino , Lactancia/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
7.
J Mammary Gland Biol Neoplasia ; 24(1): 61-71, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30328555

RESUMEN

The de novo formation of milk-secreting mammary epithelium during pregnancy is regulated by prolactin through activation of the transcription factor STAT5, which stimulates the expression of several hundred mammary-specific genes. In addition to its key role in activating gene expression in mammary tissue, STAT5, which is ubiquitously expressed in most cell types, implements T cell-specific programs controlled by interleukins. However, the mechanisms by which STAT5 controls cell-specific genetic programs activated by distinct cytokines remain relatively unknown. Integration of data from genome-wide surveys of chromatin markers and transcription factor binding at regulatory elements may shed light on the mechanisms that drive cell-specific programs. Here, we have illustrated how STAT5 controls cell-specific gene expression through its concentration and an auto-regulatory enhancer supporting its high levels in mammary tissue. The unique genomic features of STAT5-driven enhancers or super-enhancers that regulate mammary-specific genes and their dynamic remodeling in response to pregnancy hormone levels are described. We have further provided biological evidence supporting the in vivo function of a STAT5-driven super-enhancer with the aid of CRISPR/Cas9 genome editing. Finally, we discuss how the functions of mammary-specific super-enhancers are confined by the zinc finger protein, CTCF, to allow exclusive activation of mammary-specific genes without affecting common neighboring genes. This review comprehensively summarizes the molecular pathways underlying differential control of cell-specific gene sets by STAT5 and provides novel insights into STAT5-dependent mammary physiology.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Lactancia/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Factor de Transcripción STAT5/metabolismo , Animales , Factor de Unión a CCCTC/metabolismo , Sistemas CRISPR-Cas/genética , Citocinas/metabolismo , Femenino , Edición Génica/métodos , Redes Reguladoras de Genes , Sitios Genéticos , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/metabolismo , Embarazo , Prolactina/metabolismo , RNA-Seq , Factor de Transcripción STAT5/genética
8.
J Mammary Gland Biol Neoplasia ; 24(1): 47-59, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30291498

RESUMEN

Recent advances in genome-wide sequencing technologies have provided researchers with unprecedented opportunities to discover the genomic structures of gene regulatory units in living organisms. In particular, the integration of ChIP-seq, RNA-seq, and DNase-seq techniques has facilitated the mapping of a new class of regulatory elements. These elements, called super-enhancers, can regulate cell-type-specific gene sets and even fine-tune gene expression regulation in response to external stimuli, and have become a hot topic in genome biology. However, there is scant genetic evidence demonstrating their unique biological relevance and the mechanisms underlying these biological functions. In this review, we describe a robust genome-wide strategy for mapping cell-type-specific enhancers or super-enhancers in the mammary genome. In this strategy, genome-wide screening of active enhancer clusters that are co-occupied by mammary-enriched transcription factors, co-factors, and active enhancer marks is used to identify bona fide mammary tissue-specific super-enhancers. The in vivo function of these super-enhancers and their associated regulatory elements may then be investigated in various ways using the advanced CRISPR/Cas9 genome-editing technology. Based on our experience targeting various mammary genomic sites using CRISPR/Cas9 in mice, we comprehensively discuss the molecular consequences of the different targeting methods, such as the number of gRNAs and the dependence on their simultaneous or sequential injections. We also mention the considerations that are essential for obtaining accurate results and shed light on recent progress that has been made in developing modified CRISPR/Cas9 genome-editing techniques. In the future, the coupling of advanced genome-wide sequencing and genome-editing technologies could provide new insights into the complex genetic regulatory networks involved in mammary-gland development.


Asunto(s)
Elementos de Facilitación Genéticos , Edición Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Humanas/crecimiento & desarrollo , Secuenciación Completa del Genoma/métodos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Sistemas CRISPR-Cas/genética , Carcinogénesis/genética , Carcinogénesis/patología , Femenino , Edición Génica/tendencias , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/patología , Ratones , Mutagénesis , ARN Guía de Kinetoplastida/genética , Secuenciación Completa del Genoma/tendencias
9.
Biochem Biophys Res Commun ; 513(4): 781-786, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30995971

RESUMEN

Nipah virus (NiV) is a recently emerged paramyxovirus that causes acute respiratory illness and fatal encephalitis in a broad spectrum of vertebrates, including humans. Due to its high pathogenicity and mortality rates, NiV requires handling in biosafety level-4 (BSL-4) containment facilities and no effective vaccines or therapeutic agents are currently available. Since current diagnostic tests for detecting serum neutralizing antibodies against NiV mainly employ live viruses, establishment of more safe and robust alternative diagnostic methods is an essential medical requirement. Here, we have developed a pseudotyped NiV and closely related Hendra virus (HeV) expressing envelope attachment (G) and fusion (F) glycoproteins using the Moloney murine leukemia virus (MuLV) packaging system. We additionally generated polyclonal antibodies (pAbs) against NiV-G and HeV-G and assessed their neutralizing activities for potential utilization in the pseudovirus-based neutralization assay and further application in the serum diagnostic test. To enhance the specificity of neutralizing antibody and sensitivity of the serological diagnostic test, monoclonal antibodies (mAbs) against NiV-G were generated, and among which four out of six mAb clones showed significant reactivity. Specifically, the 7G9 clone displayed the highest sensitivity. The selected mAb clones showed no cross-reactivity with HeV-G and efficient neutralizing activities against pseudotyped NiV. These results validate the safety and specificity of neutralization assays against NiV and HeV and present a useful tool to design effective vaccines and serological diagnosis.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Pruebas de Neutralización/métodos , Virus Nipah/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Antígenos/inmunología , Línea Celular , Femenino , Glicoproteínas , Virus Hendra , Ratones Endogámicos BALB C , Proteínas del Envoltorio Viral
10.
Nucleic Acids Res ; 44(3): 1052-63, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26446995

RESUMEN

Signal Transducers and Activators of Transcription (STATs) are principal transcription factors downstream of cytokine receptors. Although STAT5A is expressed in most tissues it remains to be understood why its premier, non-redundant functions are restricted to prolactin-induced mammary gland development and function. We report that the ubiquitously expressed Stat5a/b locus is subject to additional lineage-specific transcriptional control in mammary epithelium. Genome-wide surveys of epigenetic status and transcription factor occupancy uncovered a putative mammary-specific enhancer within the intergenic sequences separating the two Stat5 genes. This region exhibited several hallmarks of genomic enhancers, including DNaseI hypersensitivity, H3K27 acetylation and binding by GR, NFIB, ELF5 and MED1. Mammary-specific STAT5 binding was obtained at two canonical STAT5 binding motifs. CRISPR/Cas9-mediated genome editing was used to delete these sites in mice and determine their biological function. Mutant animals exhibited an 80% reduction of Stat5 levels in mammary epithelium and a concomitant reduction of STAT5-dependent gene expression. Transcriptome analysis identified a class of mammary-restricted genes that was particularly dependent on high STAT5 levels as a result of the intergenic enhancer. Taken together, the mammary-specific enhancer enables a positive feedback circuit that contributes to the remarkable abundance of STAT5 and, in turn, to the efficacy of STAT5-dependent mammary physiology.


Asunto(s)
Elementos de Facilitación Genéticos , Glándulas Mamarias Humanas/metabolismo , Factor de Transcripción STAT5/fisiología , Animales , Secuencia de Bases , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN , Femenino , Humanos , Ratones , Datos de Secuencia Molecular , Factor de Transcripción STAT5/genética
11.
BMC Complement Altern Med ; 18(1): 331, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30541534

RESUMEN

BACKGROUND: The placenta is a reservoir enriched with growth factors, hormones, cytokines and minerals. While several beneficial effects of placenta extracts on wound healing, anti-aging and anti-inflammatory responses have been reported, relatively limited mechanistic exploration has been conducted to date. Here, we provide compelling evidence of anti-inflammatory and anti-oxidative activities of porcine placenta extracts (PPE) against contact dermatitis in vivo. METHODS: A contact dermatitis mouse model was established by sensitizing the dorsal skin of BALB/c mice using the contact allergen, 2,4-dinitrochlorobenzene (DNCB), and molecular consequences of topical application of PPE were investigated. PPEs were pre-sterilized via γ-irradiation, which is a milder but more effective way of sterilizing biomolecules relative to the conventional autoclaving method. RESULTS: DNCB-induced skin lesions displayed clear contact dermatitis-like symptoms and topical application of PPE dramatically alleviated both local and systemic inflammatory responses. Inflammatory epidermal thickening was completely abrogated and allergen-specific serum IgE levels significantly reduced in the presence of PPE. Moreover, anti-oxidative activities of PPE were observed both in vitro and in vivo, which may lead to attenuation of inflammatory responses. Prolonged treatment with PPE strongly inhibited production of DNCB-induced reactive oxygen species (ROS) and subsequently prevented oxidative degradation of hyaluronic acid (HA), which triggers innate inflammatory responses. CONCLUSION: Our findings supply valuable insights into the mechanisms underlying the anti-inflammatory effects of PPE and provide a functional basis for the clinical application of PPE in inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Productos Biológicos/farmacología , Dermatitis por Contacto/metabolismo , Placenta/química , Animales , Línea Celular , Dinitroclorobenceno/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Embarazo , Piel/efectos de los fármacos , Bazo/efectos de los fármacos , Porcinos
12.
J Cell Sci ; 126(Pt 15): 3333-43, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23704351

RESUMEN

Signal transducer and activator of transcription 5 (STAT5) is crucial for physiological processes that include hematopoiesis, liver metabolism and mammary gland development. However, aberrant continual activity of STAT5 has been causally linked to human leukemias and solid tumor formation. As a regulated transcription factor, precise cellular localization of STAT5 is essential. Conventional nuclear localization signals consist of short stretches of basic amino acids. In this study, we provide evidence that STAT5 nuclear import is dependent on an unconventional nuclear localization signal that functions within the conformation of an extensive coiled-coil domain. Both in vitro binding and in vivo functional assays reveal that STAT5 nuclear import is mediated by the importin-α3/ß1 system independently of STAT5 activation by tyrosine phosphorylation. The integrity of the coiled-coil domain is essential for STAT5 transcriptional induction of the ß-casein gene following prolactin stimulation as well as its ability to synergize with the glucocorticoid receptor. The glucocorticoid receptor accumulates in the nucleus in response to prolactin and this nuclear import is dependent on STAT5 nuclear import. STAT5 continually shuttles in and out of the nucleus and live cell imaging demonstrates that STAT5 nuclear export is mediated by both chromosome region maintenance 1 (Crm1)-dependent and Crm1-independent pathways. A Crm1-dependent nuclear export signal was identified within the STAT5 N-terminus. These findings provide insight into the fundamental mechanisms that regulate STAT5 nuclear trafficking and cooperation with the glucocorticoid receptor and provide a basis for clinical intervention of STAT5 function in disease.


Asunto(s)
Caseínas/genética , Señales de Localización Nuclear/metabolismo , Factor de Transcripción STAT5/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células COS , Caseínas/metabolismo , Núcleo Celular/metabolismo , Expresión Génica , Células HeLa , Humanos , Señales de Localización Nuclear/genética , Fosforilación , Factor de Transcripción STAT5/genética , Transducción de Señal
13.
BMB Rep ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964635

RESUMEN

Many types of cancer are associated with excessive angiogenesis. Anti-angiogenic treatment is an effective strategy for treating solid cancers. This study aimed to demonstrate the inhibitory effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) in VEGFA-induced angiogenesis. The results indicated that MMPP effectively suppressed various angiogenic processes, such as cell migration, invasion, tube formation, and sprouting of new vessels in human umbilical vein endothelial cells (HUVECs) and mouse aortic ring. The inhibitory mechanism of MMPP on angiogenesis involves targeting VEGFR2. MMPP showed high binding affinity for the VEGFR2 ATP-binding domain. Additionally, MMPP improved VEGFR2 thermal stability and inhibited VEGFR2 kinase activity, suppressing the downstream VEGFR2/AKT/ERK pathway. MMPP attenuated the activation and nuclear translocation of NF-κB, and it downregulated NF-κB target genes such as VEGFA, VEGFR2, MMP2, and MMP9. Furthermore, conditioned medium from MMPP-treated breast cancer cells effectively inhibited angiogenesis in endothelial cells. These results suggested that MMPP had great promise as a novel VEGFR2 inhibitor with potent anti-angiogenic properties for cancer treatment via VEGFR2/AKT/ERK/NF-κB signaling pathway.

14.
Vaccine ; 41(6): 1223-1231, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36631359

RESUMEN

After severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) made the world tremble with a global pandemic, SARS-CoV2 vaccines were developed. However, due to the coronavirus's intrinsic nature, new variants emerged, such as Delta and Omicron, refractory to the vaccines derived using the original Wuhan strain. We developed an HERV-enveloped recombinant baculoviral DNA vaccine against SARS-CoV2 (AcHERV-COVID19S). A non-replicating recombinant baculovirus that delivers the SARS-CoV2 spike gene showed a protective effect against the homologous challenge in a K18-hACE2 Tg mice model; however, it offered only a 50 % survival rate against the SARS-CoV2 Delta variant. Therefore, we further developed the AcHERV-COVID19 Delta vaccine (AcHERV-COVID19D). The AcHERV-COVID19D induced higher neutralizing antibodies against the Delta variant than the prototype or Omicron variant. On the other hand, cellular immunity was similarly high for all three SARS-CoV2 viruses. Cross-protection experiments revealed that mice vaccinated with the AcHERV-COVID19D showed 100 % survival upon challenge with Delta and Omicron variants and 71.4 % survival against prototype SARS-CoV2. These results support the potential of the viral vector vaccine, AcHERV-COVID19D, in preventing the spread of coronavirus variants such as Omicron and SARS-CoV2 variants.


Asunto(s)
COVID-19 , Vacunas de ADN , Vacunas Virales , Ratones , Animales , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Ratones Transgénicos , Enzima Convertidora de Angiotensina 2 , Vacunas de ADN/genética , ARN Viral , COVID-19/prevención & control , ADN , Vacunas Virales/genética , Anticuerpos Neutralizantes , Baculoviridae/genética , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
15.
Int J Stem Cells ; 16(2): 215-233, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37105559

RESUMEN

Background and Objectives: MYC, also known as an oncogenic reprogramming factor, is a multifunctional transcription factor that maintains induced pluripotent stem cells (iPSCs). Although MYC is frequently upregulated in various cancers and is correlated with a poor prognosis, MYC is downregulated and correlated with a good prognosis in lung adenocarcinoma. MYC and two other MYC family genes, MYCN and MYCL, have similar structures and could contribute to tumorigenic conversion both in vitro and in vivo. Methods and Results: We systematically investigated whether MYC family genes act as prognostic factors in various human cancers. We first evaluated alterations in the expression of MYC family genes in various cancers using the Oncomine and The Cancer Genome Atlas (TCGA) database and their mutation and copy number alterations using the TCGA database with cBioPortal. Then, we investigated the association between the expression of MYC family genes and the prognosis of cancer patients using various prognosis databases. Multivariate analysis also confirmed that co-expression of MYC/MYCL/MYCN was significantly associated with the prognosis of lung, gastric, liver, and breast cancers. Conclusions: Taken together, our results demonstrate that the MYC family can function not only as an oncogene but also as a tumor suppressor gene in various cancers, which could be used to develop a novel approach to cancer treatment.

16.
Vaccines (Basel) ; 10(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146595

RESUMEN

Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flavivirus genus and is principally transmitted by Aedes aegypti mosquitoes. ZIKV infection often causes no or only mild symptoms, but it can also trigger severe consequences, including microcephaly in infants and Guillain-Barré syndrome, uveitis, and neurologic manifestations in adults. There is no ZIKV vaccine or treatment currently approved for clinical use. The primary target of ZIKV infection has been recognized as the maternal placenta, with vertical transmission to the fetal brain. However, ZIKV can also spread to multiple tissues in adults, including the sexual organs, eyes, lymph nodes, and brain. Since numerous studies have indicated that there are slightly different tissue-specific pathologies in each animal model of ZIKV, the distinct ZIKV tropism of a given animal model must be understood to enable effective vaccine development. Here, we comprehensively discussed the tissue specificity of ZIKV reported in each animal model depending on the genetic background and route of administration. This review should facilitate the selection of appropriate animal models when studying the fundamental pathogenesis of ZIKV infection, thereby supporting the design of optimal preclinical and clinical studies for the development of vaccines and therapeutics.

17.
Life (Basel) ; 11(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947888

RESUMEN

Rapid and precise diagnostic tests can prevent the spread of diseases, including worldwide pandemics. Current commonly used diagnostic methods include nucleic-acid-amplification-based detection methods and immunoassays. These techniques, however, have several drawbacks in diagnosis time, accuracy, and cost. Nucleic acid amplification methods are sensitive but time-consuming, whereas immunoassays are more rapid but relatively insensitive. Recently developed CRISPR-based nucleic acid detection methods have been found to compensate for these limitations. In particular, the unique collateral enzymatic activities of Cas12 and Cas13 have dramatically reduced the diagnosis times and costs, while improving diagnostic accuracy and sensitivity. This review provides a comprehensive description of the distinct enzymatic features of Cas12 and Cas13 and their applications in the development of molecular diagnostic platforms for pathogen detection. Moreover, it describes the current utilization of CRISPR-Cas-based diagnostic techniques to identify SARS-CoV-2 infection, as well as recent progress in the development of CRISPR-Cas-based detection strategies for various infectious diseases. These findings provide insights into designing effective molecular diagnostic platforms for potential pandemics.

18.
PLoS One ; 16(3): e0247394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33651821

RESUMEN

The inflammatory cytokine IL-6 is known to play a causal role in the promotion of cancer, although the underlying mechanisms remain to be completely understood. Interplay between endogenous and environmental cues determines the fate of cancer development. The Eµ-myc transgenic mouse expresses elevated levels of c-Myc in the B cell lineage and develops B cell lymphomas with associated mutations in p53 or other genes linked to apoptosis. We generated Eµ-myc mice that either lacked the IL-6 gene, or lacked the STAT3 gene specifically in B cells to determine the role of the IL-6/JAK/STAT3 pathway in tumor development. Using the Eµ-myc lymphoma mouse model, we demonstrate that IL-6 is a critical tumor promoter during early stages of B cell lymphomagenesis. IL-6 is shown to inhibit the expression of tumor suppressors, notably BIM and PTEN, and this may contribute to advancing MYC-driven B cell tumorigenesis. Several miRNAs known to target BIM and PTEN are upregulated by IL-6 and likely lead to the stable suppression of pro-apoptotic pathways early during the tumorigenic process. STAT3, a classical downstream effector of IL-6, appears dispensable for Eµ-myc driven lymphomagenesis. We conclude that the growth-promoting and anti-apoptotic mechanisms activated by IL-6 are critically involved in Eµ-myc driven tumor initiation and progression, but the B cell intrinsic expression of STAT3 is not required.


Asunto(s)
Interleucina-6/metabolismo , Linfoma de Células B/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Apoptosis/genética , Linfocitos B/metabolismo , Muerte Celular/genética , Genes myc , Interleucina-6/inmunología , Quinasas Janus/metabolismo , Linfoma/patología , Linfoma de Células B/genética , Linfoma de Células B/patología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción STAT3/fisiología , Proteína p53 Supresora de Tumor/metabolismo
19.
NPJ Vaccines ; 6(1): 37, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741992

RESUMEN

Here we report a recombinant baculoviral vector-based DNA vaccine system against Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV2). A non-replicating recombinant baculovirus expressing the human endogenous retrovirus envelope gene (AcHERV) was constructed as a DNA vaccine vector for gene delivery into human cells. For MERS-CoV vaccine construction, DNA encoding MERS-CoV S-full, S1 subunit, or receptor-binding domain (RBD) was inserted into the genome of AcHERV. For COVID19 vaccine construction, DNA encoding SARS-CoV2 S-full or S1 or a MERS-CoV NTD domain-fused SARS-CoV2 RBD was inserted into the genome of AcHERV. AcHERV-DNA vaccines induce high humoral and cell-mediated immunity in animal models. In challenge tests, twice immunized AcHERV-MERS-S1 and AcHERV-COVID19-S showed complete protection against MERS-CoV and SARS-CoV2, respectively. Unlike AcHERV-MERS vaccines, AcHERV-COVID19-S provided the greatest protection against SARS-CoV2 challenge. These results support the feasibility of AcHERV-MERS or AcHERV-COVID19 vaccines in preventing pandemic spreads of viral infections.

20.
Vaccines (Basel) ; 9(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946611

RESUMEN

The Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family of enveloped RNA viruses. The correlation between viral infection and fetal microcephaly was revealed in 2015, yet we still lack a vaccine against ZIKV. Here, we present a genetic vaccine that delivers the premembrane (prM) and envelope (E) genes of ZIKV using a recombinant baculovirus vector that expresses a human endogenous retrovirus (HERV) envelope on its surface to enhance gene delivery. We observed that baculoviruses with HERV envelopes (AcHERV) exhibited specifically higher gene transfer efficiency in human cells compared to the wild-type baculovirus vector. Using the AcHERV baculovirus vector, we constructed a recombinant baculovirus vaccine encoding ZIKV prM/E genes (AcHERV-ZIKV), which are major targets of neutralizing antibodies. Mice immunized twice with AcHERV-ZIKV exhibited high levels of IgG, neutralizing antibodies, and IFN-γ. In challenge tests in IFN knock-out mice (A129), AcHERV-ZIKV showed complete protection in both challenge and pregnancy tests. These results suggest that AcHERV-ZIKV could be a potential vaccine candidate for human application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA