RESUMEN
BACKGROUND: Paclitaxel is commonly used as a second-line therapy for advanced gastric cancer (AGC). The decision to proceed with second-line chemotherapy and select an appropriate regimen is critical for vulnerable patients with AGC progressing after first-line chemotherapy. However, no predictive biomarkers exist to identify patients with AGC who would benefit from paclitaxel-based chemotherapy. METHODS: This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 2017 and 2022 as part of the K-MASTER project, a nationwide government-funded precision medicine initiative. The data included clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab use, duration of first-line chemotherapy), and genomic factors (pathogenic or likely pathogenic variants). Data were randomly divided into training and validation sets (0.8:0.2). Four machine learning (ML) methods, namely random forest (RF), logistic regression (LR), artificial neural network (ANN), and ANN with genetic embedding (ANN with GE), were used to develop the prediction model and validated in the validation sets. RESULTS: The median patient age was 64 years (range 25-91), and 65.6% of those were male. A total of 288 patients were divided into the training (n = 230) and validation (n = 58) sets. No significant differences existed in baseline characteristics between the training and validation sets. In the training set, the areas under the ROC curves (AUROC) for predicting better progression-free survival (PFS) with paclitaxel-based chemotherapy were 0.499, 0.679, 0.618, and 0.732 in the RF, LR, ANN, and ANN with GE models, respectively. The ANN with the GE model that achieved the highest AUROC recorded accuracy, sensitivity, specificity, and F1-score performance of 0.458, 0.912, 0.724, and 0.579, respectively. In the validation set, the ANN with GE model predicted that paclitaxel-sensitive patients had significantly longer PFS (median PFS 7.59 vs. 2.07 months, P = 0.020) and overall survival (OS) (median OS 14.70 vs. 7.50 months, P = 0.008). The LR model predicted that paclitaxel-sensitive patients showed a trend for longer PFS (median PFS 6.48 vs. 2.33 months, P = 0.078) and OS (median OS 12.20 vs. 8.61 months, P = 0.099). CONCLUSIONS: These ML models, integrated with clinical and genomic factors, offer the possibility to help identify patients with AGC who may benefit from paclitaxel chemotherapy.
Asunto(s)
Neoplasias Gástricas , Humanos , Masculino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Paclitaxel/uso terapéutico , Trastuzumab/uso terapéutico , Supervivencia sin Progresión , Genómica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéuticoRESUMEN
Background Deep learning (DL) may facilitate the diagnosis of various pancreatic lesions at imaging. Purpose To develop and validate a DL-based approach for automatic identification of patients with various solid and cystic pancreatic neoplasms at abdominal CT and compare its diagnostic performance with that of radiologists. Materials and Methods In this retrospective study, a three-dimensional nnU-Net-based DL model was trained using the CT data of patients who underwent resection for pancreatic lesions between January 2014 and March 2015 and a subset of patients without pancreatic abnormality who underwent CT in 2014. Performance of the DL-based approach to identify patients with pancreatic lesions was evaluated in a temporally independent cohort (test set 1) and a temporally and spatially independent cohort (test set 2) and was compared with that of two board-certified radiologists. Performance was assessed using receiver operating characteristic analysis. Results The study included 852 patients in the training set (median age, 60 years [range, 19-85 years]; 462 men), 603 patients in test set 1 (median age, 58 years [range, 18-82 years]; 376 men), and 589 patients in test set 2 (median age, 63 years [range, 18-99 years]; 343 men). In test set 1, the DL-based approach had an area under the receiver operating characteristic curve (AUC) of 0.91 (95% CI: 0.89, 0.94) and showed slightly worse performance in test set 2 (AUC, 0.87 [95% CI: 0.84, 0.89]). The DL-based approach showed high sensitivity in identifying patients with solid lesions of any size (98%-100%) or cystic lesions measuring 1.0 cm or larger (92%-93%), which was comparable with the radiologists (95%-100% for solid lesions [P = .51 to P > .99]; 93%-98% for cystic lesions ≥1.0 cm [P = .38 to P > .99]). Conclusion The deep learning-based approach demonstrated high performance in identifying patients with various solid and cystic pancreatic lesions at CT. © RSNA, 2022 Online supplemental material is available for this article.
Asunto(s)
Aprendizaje Profundo , Quiste Pancreático , Neoplasias Pancreáticas , Masculino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias Pancreáticas/cirugía , Tomografía Computarizada por Rayos X/métodosRESUMEN
OBJECTIVES: Diagnosis of flatfoot using a radiograph is subject to intra- and inter-observer variabilities. Here, we developed a cascade convolutional neural network (CNN)-based deep learning model (DLM) for an automated angle measurement for flatfoot diagnosis using landmark detection. METHODS: We used 1200 weight-bearing lateral foot radiographs from young adult Korean males for the model development. An experienced orthopedic surgeon identified 22 radiographic landmarks and measured three angles for flatfoot diagnosis that served as the ground truth (GT). Another orthopedic surgeon (OS) and a general physician (GP) independently identified the landmarks of the test dataset and measured the angles using the same method. External validation was performed using 100 and 17 radiographs acquired from a tertiary referral center and a public database, respectively. RESULTS: The DLM showed smaller absolute average errors from the GT for the three angle measurements for flatfoot diagnosis compared with both human observers. Under the guidance of the DLM, the average errors of observers OS and GP decreased from 2.35° ± 3.01° to 1.55° ± 2.09° and from 1.99° ± 2.76° to 1.56° ± 2.19°, respectively (both p < 0.001). The total measurement time decreased from 195 to 135 min in observer OS and from 205 to 155 min in observer GP. The absolute average errors of the DLM in the external validation sets were similar or superior to those of human observers in the original test dataset. CONCLUSIONS: Our CNN model had significantly better accuracy and reliability than human observers in diagnosing flatfoot, and notably improved the accuracy and reliability of human observers. KEY POINTS: ⢠Development of deep learning model (DLM) that allows automated angle measurements for landmark detection based on 1200 weight-bearing lateral radiographs for diagnosing flatfoot. ⢠Our DLM showed smaller absolute average errors for flatfoot diagnosis compared with two human observers. ⢠Under the guidance of the model, the average errors of two human observers decreased and total measurement time also decreased from 195 to 135 min and from 205 to 155 min.
Asunto(s)
Pie Plano , Masculino , Adulto Joven , Humanos , Pie Plano/diagnóstico por imagen , Pie Plano/cirugía , Reproducibilidad de los Resultados , Radiografía , Redes Neurales de la Computación , Soporte de PesoRESUMEN
Generative adversarial networks (GAN) in medicine are valuable techniques for augmenting unbalanced rare data, anomaly detection, and avoiding patient privacy issues. However, there were limits to generating high-quality endoscopic images with various characteristics, such as peristalsis, viewpoints, light sources, and mucous patterns. This study used the progressive growing of GAN (PGGAN) within the normal distribution dataset to confirm the ability to generate high-quality gastrointestinal images and investigated what barriers PGGAN has to generate endoscopic images. We trained the PGGAN with 107,060 gastroscopy images from 4165 normal patients to generate highly realistic 5122 pixel-sized images. For the evaluation, visual Turing tests were conducted on 100 real and 100 synthetic images to distinguish the authenticity of images by 19 endoscopists. The endoscopists were divided into three groups based on their years of clinical experience for subgroup analysis. The overall accuracy, sensitivity, and specificity of the 19 endoscopist groups were 61.3%, 70.3%, and 52.4%, respectively. The mean accuracy of the three endoscopist groups was 62.4 [Group I], 59.8 [Group II], and 59.1% [Group III], which was not considered a significant difference. There were no statistically significant differences in the location of the stomach. However, the real images with the anatomical landmark pylorus had higher detection sensitivity. The images generated by PGGAN showed highly realistic depictions that were difficult to distinguish, regardless of their expertise as endoscopists. However, it was necessary to establish GANs that could better represent the rugal folds and mucous membrane texture.
Asunto(s)
Gastroscopía , Medicina , Humanos , Privacidad , Procesamiento de Imagen Asistido por ComputadorRESUMEN
Objective: Ankylosing spondylitis (AS) is chronic inflammatory arthritis causing structural damage and radiographic progression to the spine due to repeated and continuous inflammation over a long period. This study establishes the application of machine learning models to predict radiographic progression in AS patients using time-series data from electronic medical records (EMRs). Methods: EMR data, including baseline characteristics, laboratory findings, drug administration, and modified Stoke AS Spine Score (mSASSS), were collected from 1,123 AS patients between January 2001 and December 2018 at a single center at the time of first (T1), second (T2), and third (T3) visits. The radiographic progression of the (n+1)th visit (Pn+1=(mSASSSn+1-mSASSSn)/(Tn+1-Tn)≥1 unit per year) was predicted using follow-up visit datasets from T1 to Tn. We used three machine learning methods (logistic regression with the least absolute shrinkage and selection operation, random forest, and extreme gradient boosting algorithms) with three-fold cross-validation. Results: The random forest model using the T1 EMR dataset best predicted the radiographic progression P2 among the machine learning models tested with a mean accuracy and area under the curves of 73.73% and 0.79, respectively. Among the T1 variables, the most important variables for predicting radiographic progression were in the order of total mSASSS, age, and alkaline phosphatase. Conclusion: Prognosis predictive models using time-series data showed reasonable performance with clinical features of the first visit dataset when predicting radiographic progression.
RESUMEN
Recent studies of automatic diagnosis of vertebral compression fractures (VCFs) using deep learning mainly focus on segmentation and vertebral level detection in lumbar spine lateral radiographs (LSLRs). Herein, we developed a model for simultaneous VCF diagnosis and vertebral level detection without using adjacent vertebral bodies. In total, 1102 patients with VCF, 1171 controls were enrolled. The 1865, 208, and 198 LSLRS were divided into training, validation, and test dataset. A ground truth label with a 4-point trapezoidal shape was made based on radiological reports showing normal or VCF at some vertebral level. We applied a modified U-Net architecture, in which decoders were trained to detect VCF and vertebral levels, sharing the same encoder. The multi-task model was significantly better than the single-task model in sensitivity and area under the receiver operating characteristic curve. In the internal dataset, the accuracy, sensitivity, and specificity of fracture detection per patient or vertebral body were 0.929, 0.944, and 0.917 or 0.947, 0.628, and 0.977, respectively. In external validation, those of fracture detection per patient or vertebral body were 0.713, 0.979, and 0.447 or 0.828, 0.936, and 0.820, respectively. The success rates were 96 % and 94 % for vertebral level detection in internal and external validation, respectively. The multi-task-shared encoder was significantly better than the single-task encoder. Furthermore, both fracture and vertebral level detection was good in internal and external validation. Our deep learning model may help radiologists perform real-life medical examinations.
RESUMEN
Premature ventricular contraction (PVC) is a common and harmless cardiac arrhythmia that can be asymptomatic or cause palpitations and chest pain in rare instances. However, frequent PVCs can lead to more serious arrhythmias, such as atrial fibrillation. Several PVC detection models have been proposed to enable early diagnosis of arrhythmias; however, they lack reliability and generalizability due to the variability of electrocardiograms across different settings and noise levels. Such weaknesses are known to aggravate with new data. Therefore, we present a deep learning model with a novel attention mechanism that can detect PVC accurately, even on unseen electrocardiograms with various noise levels. Our method, called the Denoise and Contrast Attention Module (DCAM), is a two-step process that denoises signals with a convolutional neural network (CNN) in the frequency domain and attends to differences. It focuses on differences in the morphologies and intervals of the remaining beats, mimicking how trained clinicians identify PVCs. Using three different encoder types, we evaluated 1D U-Net with DCAM on six external test datasets. The results showed that DCAM significantly improved the F1-score of PVC detection performance on all six external datasets and enhanced the performance of balancing both the sensitivity and precision of the models, demonstrating its robustness and generalization ability regardless of the encoder type. This demonstrates the need for a trainable denoising process before applying the attention mechanism. Our DCAM could contribute to the development of a reliable algorithm for cardiac arrhythmia detection under real clinical electrocardiograms.
RESUMEN
OBJECTIVE: Conventional computer-aided diagnosis using convolutional neural networks (CNN) has limitations in detecting sensitive changes and determining accurate decision boundaries in spectral and structural diseases such as scoliosis. We devised a new method to detect and diagnose adolescent idiopathic scoliosis in chest X-rays (CXRs) employing the latent space's discriminative ability in the generative adversarial network (GAN) and a simple multi-layer perceptron (MLP) to screen adolescent idiopathic scoliosis CXRs. MATERIALS AND METHODS: Our model was trained and validated in a two-step manner. First, we trained a GAN using CXRs with various scoliosis severities and utilized the trained network as a feature extractor using the GAN inversion method. Second, we classified each vector from the latent space using a simple MLP. RESULTS: The 2-layer MLP exhibited the best classification in the ablation study. With this model, the area under the receiver operating characteristic (AUROC) curves were 0.850 in the internal and 0.847 in the external datasets. Furthermore, when the sensitivity was fixed at 0.9, the model's specificity was 0.697 in the internal and 0.646 in the external datasets. CONCLUSION: We developed a classifier for Adolescent idiopathic scoliosis (AIS) through generative representation learning. Our model shows good AUROC under screening chest radiographs in both the internal and external datasets. Our model has learned the spectral severity of AIS, enabling it to generate normal images even when trained solely on scoliosis radiographs.
Asunto(s)
Cifosis , Escoliosis , Humanos , Adolescente , Escoliosis/diagnóstico por imagen , Radiografía , Redes Neurales de la Computación , Diagnóstico por Computador/métodosRESUMEN
Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.
Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Estudios Prospectivos , Radiología/métodos , Aprendizaje Automático SupervisadoRESUMEN
Robust labeling for semantic segmentation in radiographs is labor-intensive. No study has evaluated flatfoot-related deformities using semantic segmentation with U-Net on weight-bearing lateral radiographs. Here, we evaluated the robustness, accuracy enhancement, and efficiency of automated measurements for flatfoot-related angles using semantic segmentation in an active learning manner. A total of 300 consecutive weight-bearing lateral radiographs of the foot were acquired. The first 100 radiographs were used as the test set, and the following 200 radiographs were used as the training and validation sets, respectively. An expert orthopedic surgeon manually labeled ground truths. U-Net was used for model training. The Dice similarity coefficient (DSC) and Hausdorff distance (HD) were used to evaluate the segmentation results. In addition, angle measurement errors with a minimum moment of inertia (MMI) and ellipsoidal fitting (EF) based on the segmentation results were compared between active learning and learning with a pooled dataset. The mean values of DSC, HD, MMI, and EF of the average of all bones were 0.967, 1.274 mm, 0.792°, and 1.147° in active learning, and 0.964, 1.292 mm, 0.828°, and 1.186° in learning with a pooled dataset, respectively. The mean DSC and HD were significantly better in active learning than in learning with a pooled dataset. Labeling of all bones required 0.82 min in active learning and 0.88 min in learning with a pooled dataset. The accuracy and angle errors generally converged in both learning. However, the accuracies based on DSC and HD were significantly better in active learning. Moreover, active learning took less time for labeling, suggesting that active learning could be an accurate and efficient learning strategy for developing flatfoot classifiers based on semantic segmentation.
Asunto(s)
Pie Plano , Huesos Metatarsianos , Pie Plano/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Huesos Metatarsianos/diagnóstico por imagen , Semántica , Soporte de PesoRESUMEN
With the recent development of deep learning, the classification and segmentation tasks of computer-aided diagnosis (CAD) using non-contrast head computed tomography (NCCT) for intracranial hemorrhage (ICH) has become popular in emergency medical care. However, a few challenges remain, such as the difficulty of training due to the heterogeneity of ICH, the requirement for high performance in both sensitivity and specificity, patient-level predictions demanding excessive costs, and vulnerability to real-world external data. In this study, we proposed a supervised multi-task aiding representation transfer learning network (SMART-Net) for ICH to overcome these challenges. The proposed framework consists of upstream and downstream components. In the upstream, a weight-shared encoder of the model is trained as a robust feature extractor that captures global features by performing slice-level multi-pretext tasks (classification, segmentation, and reconstruction). Adding a consistency loss to regularize discrepancies between classification and segmentation heads has significantly improved representation and transferability. In the downstream, the transfer learning was conducted with a pre-trained encoder and 3D operator (classifier or segmenter) for volume-level tasks. Excessive ablation studies were conducted and the SMART-Net was developed with optimal multi-pretext task combinations and a 3D operator. Experimental results based on four test sets (one internal and two external test sets that reflect a natural incidence of ICH, and one public test set with a relatively small amount of ICH cases) indicate that SMART-Net has better robustness and performance in terms of volume-level ICH classification and segmentation over previous methods. All code is available at https://github.com/babbu3682/SMART-Net.
Asunto(s)
Hemorragias Intracraneales , Tomografía Computarizada por Rayos X , Diagnóstico por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Hemorragias Intracraneales/diagnóstico por imagen , Sensibilidad y EspecificidadRESUMEN
BACKGROUND/PURPOSE: The use of MRI as a diagnostic tool has gained popularity in the field of orthopedics. Although 3-dimensional (3D) MRI offers more intuitive visualization and can better facilitate treatment planning than 2-dimensional (2D) MRI, manual segmentation for 3D visualization is time-consuming and lacks reproducibility. Recent advancements in deep learning may provide a solution to this problem through the process of automatic segmentation. The purpose of this study was to develop automated semantic segmentation on 2D MRI images of rotator cuff tears by using a convolutional neural network to visualize 3D models of related anatomic structures. METHODS: MRI scans from 56 patients with rotator cuff tears (T2 Linear Coronal MRI; 3.0T, 512 mm × 512 mm, and 2.5-mm slice thickness) were collected. Segmentation masks for the cuff tendon, muscle, bone, and cartilage were obtained by four orthopedic shoulder surgeons, and these data were revised by a shoulder surgeon with more than 20 years' experience. We performed 2D and 3D segmentation using nnU-Net with secondary labels for reducing false positives. Final validation was performed in an external T2 MRI dataset (10 cases) acquired from other institutions. The Dice Similarity Coefficient (DSC) was used to validate segmentation quality. RESULTS: The use of 3D nnU-Net with secondary labels to reduce false positives achieved satisfactory results, even with a limited amount of data. The DSCs (mean ± SD) of the cuff tendon, muscle, bone, and cartilage in the internal test set were 80.7% ± 9.7%, 85.8% ± 8.6%, 97.8% ± 0.6%, and 80.8% ± 15.1%, respectively. In external validation, the DSC of the tendon segmentation was 82.74±5.2%. CONCLUSION: Automated segmentation using 3D U-Net produced acceptable accuracy and reproducibility. This method could provide rapid, intuitive visualization that can significantly facilitate the diagnosis and treatment planning in patients with rotator cuff tears.
Asunto(s)
Aprendizaje Profundo , Lesiones del Manguito de los Rotadores , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Lesiones del Manguito de los Rotadores/cirugíaRESUMEN
Purpose: To develop and validate a deep learning-based screening tool for the early diagnosis of scoliosis using chest radiographs with a semi-supervised generative adversarial network (GAN). Materials and Methods: Using a semi-supervised learning framework with a GAN, a screening tool for diagnosing scoliosis was developed and validated through the chest PA radiographs of patients at two different tertiary hospitals. Our proposed method used training GAN with mild to severe scoliosis only in a semi-supervised manner, as an upstream task to learn scoliosis representations and a downstream task to perform simple classification for differentiating between normal and scoliosis states sensitively. Results: The area under the receiver operating characteristic curve, negative predictive value (NPV), positive predictive value, sensitivity, and specificity were 0.856, 0.950, 0.579, 0.985, and 0.285, respectively. Conclusion: Our deep learning-based artificial intelligence software in a semi-supervised manner achieved excellent performance in diagnosing scoliosis using the chest PA radiographs of young individuals; thus, it could be used as a screening tool with high NPV and sensitivity and reduce the burden on radiologists for diagnosing scoliosis through health screening chest radiographs.
RESUMEN
Landmark detection in flatfoot radiographs is crucial in analyzing foot deformity. Here, we evaluated the accuracy and efficiency of the automated identification of flatfoot landmarks using a newly developed cascade convolutional neural network (CNN) algorithm, Flatfoot Landmarks AnnoTating Network (FlatNet). A total of 1200 consecutive weight-bearing lateral radiographs of the foot were acquired. The first 1050 radiographs were used as the training and tuning, and the following 150 radiographs were used as the test sets, respectively. An expert orthopedic surgeon (A) manually labeled ground truths for twenty-five anatomical landmarks. Two orthopedic surgeons (A and B, each with eight years of clinical experience) and a general physician (GP) independently identified the landmarks of the test sets using the same method. After two weeks, observers B and GP independently identified the landmarks once again using the developed deep learning CNN model (DLm). The X- and Y-coordinates and the mean absolute distance were evaluated. The average differences (mm) from the ground truth were 0.60 ± 0.57, 1.37 ± 1.28, and 1.05 ± 1.23 for the X-coordinate, and 0.46 ± 0.59, 0.97 ± 0.98, and 0.73 ± 0.90 for the Y-coordinate in DLm, B, and GP, respectively. The average differences (mm) from the ground truth were 0.84 ± 0.73, 1.90 ± 1.34, and 1.42 ± 1.40 for the absolute distance in DLm, B, and GP, respectively. Under the guidance of the DLm, the overall differences (mm) from the ground truth were enhanced to 0.87 ± 1.21, 0.69 ± 0.74, and 1.24 ± 1.31 for the X-coordinate, Y-coordinate, and absolute distance, respectively, for observer B. The differences were also enhanced to 0.74 ± 0.73, 0.57 ± 0.63, and 1.04 ± 0.85 for observer GP. The newly developed FlatNet exhibited better accuracy and reliability than the observers. Furthermore, under the FlatNet guidance, the accuracy and reliability of the human observers generally improved.
Asunto(s)
Pie Plano , Pie , Humanos , Redes Neurales de la Computación , Reproducibilidad de los Resultados , Soporte de PesoRESUMEN
Recently, significant improvements have been made in artificial intelligence. The artificial neural network was introduced in the 1950s. However, because of the low computing power and insufficient datasets available at that time, artificial neural networks suffered from overfitting and vanishing gradient problems for training deep networks. This concept has become more promising owing to the enhanced big data processing capability, improvement in computing power with parallel processing units, and new algorithms for deep neural networks, which are becoming increasingly successful and attracting interest in many domains, including computer vision, speech recognition, and natural language processing. Recent studies in this technology augur well for medical and healthcare applications, especially in endoscopic imaging. This paper provides perspectives on the history, development, applications, and challenges of deep-learning technology.
RESUMEN
BACKGROUND AND OBJECTIVE: We investigated a novel method using a 2D convolutional neural network (CNN) to identify superior and inferior vertebrae in a single slice of CT images, and a post-processing for 3D segmentation and separation of cervical vertebrae. METHODS: The cervical spines of patients (N == 17, 1684 slices) from Severance and Gangnam Severance Hospitals (S/GSH) and healthy controls (N == 24, 3490 slices) from Seoul National University Bundang Hospital (SNUBH) were scanned by using various volumetric CT protocols. To prepare gold standard masks of cervical spine in CT images, each spine was segmented by using conventional image-processing methods and manually corrected by an expert. The gold standard masks were preprocessed and labeled into superior and inferior cervical vertebrae separately in the axial slices. The 2D U-Net model was trained by using the disease dataset (S/GSH) and additional validation was performed by using the healthy control dataset (SNUBH), and then the training and validation were repeated by switching the two datasets. RESULTS: In case of the model was trained with the disease dataset (S/GSH) and validated with the healthy control (SNUBH), the mean and standard deviation (SD) of the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), mean surface distance (MSD), and Hausdorff surface distance (HSD) were 94.37%% ± 1.45%, 89.47%% ± 2.55%, 0.33 ± 0.12 mm and 20.89 ± 3.98 mm, and 88.67%% ± 5.82%, 80.83%% ± 8.09%, 1.05 ± 0.63 mm and 29.17 ± 19.74 mm, respectively. In case of the model was trained with the healthy control (SNUBH) and validated with the disease dataset (S/GSH), the mean and SD of DSC, JSC, MSD, and HSD were 96.23%% ± 1.55%, 92.95%% ± 2.58%, 0.39 ± 0.20 mm and 16.23 ± 6.72 mm, and 93.15%% ± 3.09%, 87.54%% ± 5.11%, 0.38 ± 0.17 mm and 20.85 ± 7.11 mm, respectively. CONCLUSIONS: The results demonstrated that our fully automated method achieved comparable accuracies with inter- and intra-observer variabilities of manual segmentation by human experts, which is time consuming.
Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Automatización , Estudios de Casos y Controles , Conjuntos de Datos como Asunto , Humanos , Reproducibilidad de los ResultadosRESUMEN
The artificial neural network (ANN), one of the machine learning (ML) algorithms, inspired by the human brain system, was developed by connecting layers with artificial neurons. However, due to the low computing power and insufficient learnable data, ANN has suffered from overfitting and vanishing gradient problems for training deep networks. The advancement of computing power with graphics processing units and the availability of large data acquisition, deep neural network outperforms human or other ML capabilities in computer vision and speech recognition tasks. These potentials are recently applied to healthcare problems, including computer-aided detection/diagnosis, disease prediction, image segmentation, image generation, etc. In this review article, we will explain the history, development, and applications in medical imaging.