RESUMEN
Background and Objectives: Sevoflurane has opposing effects on cancer progression, depending on its concentration and the cancer type. This study investigated the effects of sevoflurane on the proliferation of A549 lung cancer cells. Materials and Methods: In vitro, the number of A549 cells exposed to different concentrations of sevoflurane was counted. The size and weight of tumors from a xenograft mouse model exposed to air or sevoflurane were measured in vivo experiments. Additionally, hematoxylin and eosin staining and immunohistochemical detection of Ki-67 in the harvested tumor tissues were performed. Results: A total of 72 culture dishes were used and 24 dishes were assigned to each group: Air group; 2% Sevo group (air + 2% sevoflurane); and 4% Sevo group (air + 4% sevoflurane). The number of A549 cells in the 2% Sevo group was less than that in the Air and 4% Sevo groups (Air: 7.9 ± 0.5; 0.5, 2% Sevo: 6.8 ± 0.4, 4% Sevo: 8.1 ± 0.3; p = 0.000). The tumor size was not significantly different between the two groups (Air: 1.5 ± 0.7, 2% Sevo: 2.4 ± 1.9; p = 0.380). Conclusions: The in vitro data showed that sevoflurane inhibited the proliferation of A549 lung cancer cells in a concentration-specific manner. However, the in vivo data showed no correlation between sevoflurane exposure and A549 cell proliferation. Thus, further research is required to understand fully the effects of sevoflurane on cancer progression and to reconcile differences between the in vitro and in vivo experimental results.
Asunto(s)
Neoplasias Pulmonares , Humanos , Animales , Ratones , Sevoflurano/farmacología , Células A549 , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación CelularRESUMEN
Background and objectives: There are several studies that sevoflurane could enhance proliferation of cancer cells, while others suggest no effect on clinical outcome. We conducted in vivo and in vitro experiments to investigate the effects of sevoflurane, a volatile anesthetic, on proliferation and outcomes of Lewis lung carcinoma (LLC) cells. Materials and Methods: A total of 37 mice were injected with LLC cells to compare the tumor size and survival of the sevoflurane exposed group (sevo group) and control group. The sevo group was exposed to 2% sevoflurane and 4 L/min of oxygen for 1 h per day 3 times per week, and the control group was exposed only to 4 L/min of oxygen. In vitro study, 12 plates incubated with LCC cells. 6 plates were exposed to 2% sevoflurane for 1 hr/day for 3 days and 6 plates were not exposed, and cell proliferation was compared after 3 days. Results: There were no significant differences in survival or tumor size between mice exposed to sevoflurane and control mice (survival: 29.06 ± 4.45 vs. 28.76 ± 3.75, p = 0.836; tumor size: 0.75 (0.41-1.02) vs. 0.49 (0.11-0.79), p = 0.153). However, in vitro study, the proliferation of LLC cells exposed to sevoflurane increased by 9.2% compared to the control group (p = 0.018). Conclusions: Sevoflurane (2 vol%) exposure could promote proliferation of LLC cells in vitro environment, but may not affect proliferation of LLC cells in vivo environment. These results suggest that in vitro studies on the effects of anesthetics on cancer may differ from those of in vivo or clinical studies.
Asunto(s)
Anestésicos por Inhalación/farmacología , Carcinoma Pulmonar de Lewis/patología , Proliferación Celular/efectos de los fármacos , Sevoflurano/farmacología , Animales , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Técnicas In Vitro , Ratones , Trasplante de Neoplasias , Carga TumoralRESUMEN
Nucleobase adenine is produced by dividing human lymphoblasts mainly from polyamine synthesis and inhibits immunological functions of lymphocytes. We investigated the anti-allergic effect of adenine on IgE-mediated mast cell activation in vitro and passive cutaneous anaphylaxis (PCA) in mice. Intraperitoneal injection of adenine to IgE-sensitized mice attenuated IgE-mediated PCA reaction in a dose dependent manner, resulting in a median effective concentration of 4.21 mg/kg. In mast cell cultures, only adenine among cytosine, adenine, adenosine, ADP and ATP dose-dependently suppressed FcÉRI (a high affinity receptor for IgE)-mediated degranulation with a median inhibitory concentration of 1.6mM. It also blocked the production of LTB4, an inflammatory lipid mediator, and inflammatory cytokines TNF-α and IL-4. In addition, adenine blocked thapsigargin-induced degranulation which is FcÉRI-independent but shares FcÉRI-dependent signaling events. Adenine inhibited the phosphorylation of signaling molecules important to FcÉRI-mediated allergic reactions such as Syk, PLCγ2, Gab2, Akt, and mitogen activated protein kinases ERK and JNK. From this result, we report for the first time that adenine inhibits PCA in mice and allergic reaction by inhibiting FcÉRI-mediated signaling events in mast cells. Therefore, adenine may be useful for the treatment of mast cell-mediated allergic diseases. Also, the upregulation of adenine production may provide another mechanism for suppressing mast cell activity especially at inflammatory sites.