Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Anal Chem ; 93(34): 11765-11774, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34387479

RESUMEN

Microelectrodes are widely used for neural signal analysis because they can record high-resolution signals. In general, the smaller the size of the microelectrode for obtaining a high-resolution signal, the higher the impedance and noise value of the electrodes. Therefore, to improve the signal-to-noise ratio (SNR) of neural signals, it is important to develop microelectrodes with low impedance and noise. In this research, an Au hierarchical nanostructure (AHN) was deposited to improve the electrochemical surface area (ECSA) of a microelectrode. Au nanostructures on different scales were deposited on the electrode surface in a hierarchical structure using an electrochemical deposition method. The AHN-modified microelectrode exhibited an average of 80% improvement in impedance compared to a bare microelectrode. Through electrochemical impedance spectroscopy analysis and impedance equivalent circuit modeling, the increase in the ECSA due to the AHN was confirmed. After evaluating the cell cytotoxicity of the AHN-modified microelectrode through an in vitro test, neural signals from rats were obtained in in vivo experiments. The AHN-modified microelectrode exhibited an approximate 9.79 dB improvement in SNR compared to the bare microelectrode. This surface modification technology is a post-treatment strategy used for existing fabricated electrodes, so it can be applied to microelectrode arrays and nerve electrodes made from various structures and materials.


Asunto(s)
Nanoestructuras , Animales , Espectroscopía Dieléctrica , Impedancia Eléctrica , Microelectrodos , Ratas , Relación Señal-Ruido
2.
Sensors (Basel) ; 21(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199213

RESUMEN

We utilized scanning probe microscopy (SPM) based on a metal-oxide-silicon field-effect transistor (MOSFET) to image interdigitated electrodes covered with oxide films that were several hundred nanometers in thickness. The signal varied depending on the thickness of the silicon dioxide film covering the electrodes. We deposited a 400- or 500-nm-thick silicon dioxide film on each sample electrode. Thick oxide films are difficult to analyze using conventional probes because of their low capacitance. In addition, we evaluated linearity and performed frequency response measurements; the measured frequency response reflected the electrical characteristics of the system, including the MOSFET, conductive tip, and local sample area. Our technique facilitated analysis of the passivation layers of integrated circuits, especially those of the back-end-of-line (BEOL) process, and can be used for subsurface imaging of various dielectric layers.

3.
Sensors (Basel) ; 20(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998343

RESUMEN

Miniaturized capacitive microphones often show sensitivity degradation in the low-frequency region due to electrical and acoustical time constants. For low-frequency sound detection, conventional systems use a microphone with a large diaphragm and a large back chamber to increase the time constant. In order to overcome this limitation, an electret gate on a field-effect transistor (ElGoFET) structure was proposed, which is the field-effect transistor (FET) mounted diaphragm faced on electret. The use of the sensing mechanism consisting of the integrated FET and electret enables the direct detection of diaphragm displacement, which leads its acoustic senor application (ElGoFET microphone) and has a strong ability to detect low-frequency sound. We studied a theoretical model and design for low-frequency operation of the ElGoFET microphone prototype. Experimental investigations pertaining to the design, fabrication, and acoustic measurement of the microphone were performed and the results were compared to our analytical predictions. The feasibility of the microphone as a low-frequency micro-electromechanical system (MEMS) microphone, without the need for a direct current bias voltage (which is of particular interest for applications requiring miniaturized components), was demonstrated by the flat-band frequency response in the low-frequency region.

4.
Sensors (Basel) ; 15(8): 20232-49, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26295231

RESUMEN

Capacitive-type transduction is now widely used in MEMS microphones. However, its sensitivity decreases with reducing size, due to decreasing air gap capacitance. In the present study, we proposed and developed the Electret Gate of Field Effect Transistor (ElGoFET) transduction based on an electret and FET (field-effect-transistor) as a novel mechanism of MEMS microphone transduction. The ElGoFET transduction has the advantage that the sensitivity is dependent on the ratio of capacitance components in the transduction structure. Hence, ElGoFET transduction has high sensitivity even with a smaller air gap capacitance, due to a miniaturization of the transducer. A FET with a floating-gate electrode embedded on a membrane was designed and fabricated and an electret was fabricated by ion implantation with Ga(+) ions. During the assembly process between the FET and the electret, the operating point of the FET was characterized using the static response of the FET induced by the electric field due to the trapped positive charge at the electret. Additionally, we evaluated the microphone performance of the ElGoFET by measuring the acoustic response in air using a semi-anechoic room. The results confirmed that the proposed transduction mechanism has potential for microphone applications.

5.
Micromachines (Basel) ; 12(11)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34832715

RESUMEN

We report recent improvements of the tip-on-gate of field-effect-transistor (ToGoFET) probe used for capacitive measurement. Probe structure, fabrication, and signal processing were modified. The inbuilt metal-oxide-semiconductor field-effect-transistor (MOSFET) was redesigned to ensure reliable probe operation. Fabrication was based on the standard complementary metal-oxide-semiconductor (CMOS) process, and trench formation and the channel definition were modified. Demodulation of the amplitude-modulated drain current was varied, enhancing the signal-to-noise ratio. The I-V characteristics of the inbuilt MOSFET reflect the design and fabrication modifications, and measurement of a buried electrode revealed improved ToGoFET imaging performance. The minimum measurable value was enhanced 20-fold.

6.
Micron ; 101: 197-205, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28797948

RESUMEN

We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity.

7.
Ultramicroscopy ; 159 Pt 1: 1-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26231315

RESUMEN

We propose a method for measuring the capacitance of a thin layer using a Tip-on-Gate of Field-Effect Transistor (ToGoFET) probe. A ToGoFET probe with a metal-oxide-semiconductor field-effect transistor (MOSFET) with an ion-implant channel was embedded at the end of a cantilever and a Pt tip was fabricated using micro-machining. The ToGoFET probe was used to detect an alternating electric field at the dielectric surface. A dielectric buried metal sample was prepared; a sinusoidal input signal was applied to the buried metal lines; and the ToGoFET probe detected the electric field at the tip via the dielectric. The AC signal detected by the ToGoFET probe was demodulated by a simple AC-to-DC converter. Experimentally, it was shown that an electric field could be measured at the surface of the dielectric layer above a buried metal line. This promising result shows that it is possible to measure the surface local capacitance.

8.
Adv Healthc Mater ; 3(2): 245-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23950033

RESUMEN

Microelectrodes are widely used for monitoring neural activities in various neurobiological studies. The size of the neural electrode is an important factor in determining the signal-to-noise ratio (SNR) of recorded neural signals and, thereby, the recording sensitivity. Here, it is demonstrated that commercial tungsten microelectrodes can be modified with carbon nanotubes (CNTs), resulting in a highly sensitive recording ability. The impedance with the respect to surface area of the CNT-modified electrodes (CNEs) is much less than that of tungsten microelectrodes because of their large electrochemical surface area (ESA). In addition, the noise level of neural signals recorded by CNEs is significantly less. Thus, the SNR is greater than that obtained using tungsten microelectrodes. Importantly, when applied in a mouse brain in vivo, the CNEs can detect action potentials five times more efficiently than tungsten microelectrodes. This technique provides a significant advance in the recording of neural signals, especially in brain regions with sparse neuronal densities.


Asunto(s)
Electrodos , Nanotubos de Carbono/química , Células Cultivadas , Humanos , Neuronas/fisiología , Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA