Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-32081432

RESUMEN

Metabolic reprogramming is required for tumors to meet the bioenergetic and biosynthetic demands of malignant progression. Numerous studies have established a causal relationship between oncogenic drivers and altered metabolism, most prominently aerobic glycolysis, which supports rapid growth and affects the tumor microenvironment. Less is known about how the microenvironment modulates cancer metabolism. In the present study, we found that low extracellular pH, a common feature of solid tumors, provoked PDAC cells to decrease glycolysis and become resistant to glucose starvation. This was accompanied by increased dependency on mitochondrial metabolism, in which long-chain fatty acids became a primary fuel source. Consistent with previous reports, low pH enhanced tumor cell invasiveness. A novel finding was that limiting PDAC metabolic flexibility by either suppression of oxidative phosphorylation capacity or the pharmacological inhibition of fatty-acid oxidation prevented invasion induced by low extracellular pH. Altogether, our results suggest for the first time that targeting fatty-acid oxidation may be a viable adjunct strategy for preventing metastatic progression of pancreatic cancer mediated by the acidic tumor compartment.

2.
Cell Immunol ; 301: 65-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26877251

RESUMEN

Long-lived plasma cells (LLPCs) can persistently produce anti-factor VIII (FVIII) antibodies which disrupt therapeutic effect of FVIII in hemophilia A patients with inhibitors. The migration of plasma cells to BM where they become LLPCs is largely controlled by an interaction between the chemokine ligand CXCL12 and its receptor CXCR4. AMD3100 combined with G-CSF inhibit their interactions, thus facilitating the mobilization of CD34(+) cells and blocking the homing of LLPCs. These reagents were combined with anti-CD20 to reduce B-cells and the specific IL-2/IL-2mAb (JES6-1) complexes to induce Treg expansion for targeting anti-FVIII immune responses. Groups of mice primed with FVIII plasmid and protein respectively were treated with the combined regimen for six weeks, and a significant reduction of anti-FVIII inhibitor titers was observed, associated with the dramatic decrease of circulating and bone marrow CXCR4(+) plasma cells. The combination regimens are highly promising in modulating pre-existing anti-FVIII antibodies in FVIII primed subjects.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Factor Estimulante de Colonias de Granulocitos/farmacología , Hemofilia A/inmunología , Compuestos Heterocíclicos/farmacología , Inmunosupresores/farmacología , Células Plasmáticas/efectos de los fármacos , Animales , Anticuerpos Monoclonales/farmacología , Bencilaminas , Ciclamas , Modelos Animales de Enfermedad , Ensayo de Immunospot Ligado a Enzimas , Citometría de Flujo , Tolerancia Inmunológica/efectos de los fármacos , Ratones , Receptores CXCR4/antagonistas & inhibidores
3.
Mol Ther ; 23(4): 617-26, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25655313

RESUMEN

Intraosseous (IO) infusion of lentiviral vectors (LVs) for in situ gene transfer into bone marrow may avoid specific challenges posed by ex vivo gene delivery, including, in particular, the requirement of preconditioning. We utilized IO delivery of LVs encoding a GFP or factor VIII (FVIII) transgene directed by ubiquitous promoters (a MND or EF-1α-short element; M-GFP-LV, E-F8-LV) or a platelet-specific, glycoprotein-1bα promoter (G-GFP-LV, G-F8-LV). A single IO infusion of M-GFP-LV or G-GFP-LV achieved long-term and efficient GFP expression in Lineage(-)Sca1(+)c-Kit(+) hematopoietic stem cells and platelets, respectively. While E-F8-LV produced initially high-level FVIII expression, robust anti-FVIII immune responses eliminated functional FVIII in circulation. In contrast, IO delivery of G-F8-LV achieved long-term platelet-specific expression of FVIII, resulting in partial correction of hemophilia A. Furthermore, similar clinical benefit with G-F8-LV was achieved in animals with pre-existing anti-FVIII inhibitors. These findings further support platelets as an ideal FVIII delivery vehicle, as FVIII, stored in α-granules, is protected from neutralizing antibodies and, during bleeding, activated platelets locally excrete FVIII to promote clot formation. Overall, a single IO infusion of G-F8-LV was sufficient to correct hemophilia phenotype for long term, indicating that this approach may provide an effective means to permanently treat FVIII deficiency.


Asunto(s)
Plaquetas/metabolismo , Factor VIII/genética , Vectores Genéticos/administración & dosificación , Hemofilia A/terapia , Lentivirus/genética , Animales , Línea Celular , Factor VIII/metabolismo , Proteínas Fluorescentes Verdes/genética , Hemofilia A/sangre , Humanos , Infusiones Intraóseas , Ratones
4.
Biomolecules ; 11(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915939

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains a very difficult cancer to treat. Recent in vitro and in vivo studies suggest that the activation of the receptor for advanced glycation end products (RAGE) by its ligands stimulates pancreatic cancer cell proliferation and tumor growth. Additional studies show that, in the RAGE ligand, the high mobility group box 1 (HMGB1) protein plays an important role in chemoresistance against the cytotoxic agent gemcitabine by promoting cell survival through increased autophagy. We hypothesized that blocking the RAGE/HMGB1 interaction would enhance the cytotoxic effect of gemcitabine by reducing cell survival and autophagy. Using a preclinical mouse model of PDAC and a monoclonal antibody (IgG 2A11) as a RAGE inhibitor, we demonstrate that RAGE inhibition concurrent with gemcitabine treatment enhanced the cytotoxic effect of gemcitabine. The combination of IgG 2A11 and gemcitabine resulted in decreased autophagy compared to treatment with gemcitabine combined with control antibodies. Notably, we also observed that RAGE inhibition protected against excessive weight loss during treatment with gemcitabine. Our data suggest that the combination of gemcitabine with a RAGE inhibitor could be a promising therapeutic approach for the treatment of pancreatic cancer and needs to be further investigated.


Asunto(s)
Autofagia/efectos de los fármacos , Desoxicitidina/análogos & derivados , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Proteína HMGB1/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/inmunología , Trasplante Homólogo , Gemcitabina
5.
Mol Cancer Ther ; 20(12): 2457-2468, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625505

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) represents 3% of all cancer cases and 7% of all cancer deaths in the United States. Late diagnosis and inadequate response to standard chemotherapies contribute to an unfavorable prognosis and an overall 5-year survival rate of less than 10% in PDAC. Despite recent advances in tumor immunology, tumor-induced immunosuppression attenuates the immunotherapy response in PDAC. To date, studies have focused on IgG-based therapeutic strategies in PDAC. With the recent interest in IgE-based therapies in multiple solid tumors, we explored the MUC1-targeted IgE potential against pancreatic cancer. Our study demonstrates the notable expression of FceRI (receptor for IgE antibody) in tumors from PDAC patients. Our study showed that administration of MUC1 targeted-IgE (mouse/human chimeric anti-MUC1.IgE) antibody at intermittent levels in combination with checkpoint inhibitor (anti-PD-L1) and TLR3 agonist (PolyICLC) induces a robust antitumor response that is dependent on NK and CD8 T cells in pancreatic tumor-bearing mice. Subsequently, our study showed that the antigen specificity of the IgE antibody plays a vital role in executing the antitumor response as nonspecific IgE, induced by ovalbumin (OVA), failed to restrict tumor growth in pancreatic tumor-bearing mice. Utilizing the OVA-induced allergic asthma-PDAC model, we demonstrate that allergic phenotype induced by OVA cannot restrain pancreatic tumor growth in orthotopic tumor-bearing mice. Together, our data demonstrate the novel tumor protective benefits of tumor antigen-specific IgE-based therapeutics in a preclinical model of pancreatic cancer, which can open new avenues for future clinical interventions.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunoglobulina E/uso terapéutico , Animales , Humanos , Inmunoglobulina E/farmacología , Ratones
6.
Oncogene ; 38(26): 5308-5320, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30918331

RESUMEN

Rab proteins play an essential role in regulating intracellular membrane trafficking processes. Rab activity is dependent upon geranylgeranylation, a post-translational modification that involves the addition of 20-carbon isoprenoid chains via the enzyme geranylgeranyl transferase (GGTase) II. We have focused on the development of inhibitors against geranylgeranyl diphosphate synthase (GGDPS), which generates the isoprenoid donor (GGPP), as anti-Rab agents. Pancreatic ductal adenocarcinoma (PDAC) is characterized by abnormal mucin production and these mucins play important roles in tumor development, metastasis and chemo-resistance. We hypothesized that GGDPS inhibitor (GGDPSi) treatment would induce PDAC cell death by disrupting mucin trafficking, thereby inducing the unfolded protein response pathway (UPR) and apoptosis. To this end, we evaluated the effects of RAM2061, a potent GGDPSi, against PDAC. Our studies revealed that GGDPSi treatment activates the UPR and triggers apoptosis in a variety of human and mouse PDAC cell lines. Furthermore, GGDPSi treatment was found to disrupt the intracellular trafficking of key mucins such as MUC1. These effects could be recapitulated by incubation with a specific GGTase II inhibitor, but not a GGTase I inhibitor, consistent with the effect being dependent on disruption of Rab-mediated activities. In addition, siRNA-mediated knockdown of GGDPS induces upregulation of UPR markers and disrupts MUC1 trafficking in PDAC cells. Experiments in two mouse models of PDAC demonstrated that GGDPSi treatment significantly slows tumor growth. Collectively, these data support further development of GGDPSi therapy as a novel strategy for the treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Farnesiltransferasa/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Farnesiltransferasa/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Respuesta de Proteína Desplegada/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Data Brief ; 7: 973-80, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27081675

RESUMEN

Hemophilia A mice with pre-existing inhibitory antibodies against factor VIII (FVIII) were treated with single agents, AMD3100 and GCS-F, respectively. Inhibitor titers in treated mice and control HemA inhibitors mice were followed over time. Total B cells and plasma cells (PCs) were characterized by flow cytometry. HemA inhibitor mice were then treated with a combination regimen of IL-2/IL-2mAb complexes plus rapamycin and AMD3100. Finally, HemA inhibitor mice were treated with a new combination therapy using include IL-2/IL-2mAb complexes + Anti-CD20+AMD3100+G-CSF. The timeline of combination therapy was illustrated. Inhibitor titers following treatment in FVIII plasmid or protein induced inhibitor mice were evaluated overtime. A representative figure and gating strategies to characterize the subsets of Treg cells and B cells are presented. Please see http://dx.doi.org/10.1016/j.cellimm.2016.01.005 [1] for interpretation and discussion of these data and results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA