Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892403

RESUMEN

Bakanae disease (BD), caused by the fungal pathogen Fusarium fujikuroi, is a serious threat to rice production worldwide. Breeding elite rice varieties resistant to BD requires the identification of resistance genes. Previously, we discovered a resistant quantitative trait locus (QTL), qFfR1, in a Korean japonica rice variety, Nampyeong. In this study, we fine-mapped qFfR1 with a Junam*4/Nampyeong BC3F3 population and delimited its location to a 37.1 kb region on chromosome 1. Complementation experiments with seven candidate genes in this region revealed that OsI_02728 is the gene for qFfR1. This gene encodes a protein with a typical leucine-rich repeat (LRR) receptor-like protein structure. RNA-sequencing-based transcriptomic analysis revealed that FfR1 induces the transcription of defense genes, including lignin and terpenoid biosynthesis genes, pathogenesis-related genes, and thionin genes. These results may facilitate investigations into the molecular mechanisms underlying BD resistance, including molecular patterns of Fusarium fujikuroi interacting with FfR1 and players working in signal transduction pathways downstream of FfR1, and the breeding of new BD-resistant varieties by providing a BD resistance gene with its precise selection marker. This will contribute to efficient control of BD, which is becoming more prevalent according to temperature rises due to climate change.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Fusarium , Oryza , Enfermedades de las Plantas , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Fusarium/patogenicidad , Clonación Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas/genética
2.
Plant Physiol ; 186(4): 1878-1892, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33930152

RESUMEN

Endoplasmic reticulum (ER) quality control processes recognize and eliminate misfolded proteins to maintain cellular protein homeostasis and prevent the accumulation of defective proteins in the secretory pathway. Glycosylphosphatidylinositol (GPI)-anchored proteins carry a glycolipid modification, which provides an efficient ER export signal and potentially prevents the entry into ER-associated degradation (ERAD), which is one of the major pathways for clearance of terminally misfolded proteins from the ER. Here, we analyzed the degradation routes of different misfolded glycoproteins carrying a C-terminal GPI-attachment signal peptide in Arabidopsis thaliana. We found that a fusion protein consisting of the misfolded extracellular domain from Arabidopsis STRUBBELIG and the GPI-anchor attachment sequence of COBRA1 was efficiently targeted to hydroxymethylglutaryl reductase degradation protein 1 complex-mediated ERAD without the detectable attachment of a GPI anchor. Non-native variants of the GPI-anchored lipid transfer protein 1 (LTPG1) that lack a severely misfolded domain, on the other hand, are modified with a GPI anchor and targeted to the vacuole for degradation. Impaired processing of the GPI-anchoring signal peptide by mutation of the cleavage site or in a GPI-transamidase-compromised mutant caused ER retention and routed the non-native LTPG1 to ERAD. Collectively, these results indicate that for severely misfolded proteins, ER quality control processes are dominant over ER export. For less severely misfolded proteins, the GPI anchor provides an efficient ER export signal resulting in transport to the vacuole.


Asunto(s)
Proteínas de Arabidopsis/química , Retículo Endoplásmico/metabolismo , Glicoproteínas/química , Glicosilfosfatidilinositoles/química , Pliegue de Proteína , Arabidopsis
3.
Plant J ; 94(2): 246-259, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29396984

RESUMEN

Many soluble and integral membrane proteins fold in the endoplasmic reticulum (ER) with the help of chaperones and folding factors. Despite these efforts, protein folding is intrinsically error prone and amino acid changes, alterations in post-translational modifications or cellular stress can cause protein misfolding. Folding-defective non-native proteins are cleared from the ER and typically undergo ER-associated degradation (ERAD). Here, we investigated whether different misfolded glycoproteins require the same set of ERAD factors and are directed to HRD1 complex-mediated degradation in plants. We generated a series of glycoprotein ERAD substrates harboring a misfolded domain from Arabidopsis STRUBBELIG or the BRASSINOSTEROID INSENSITVE 1 receptor fused to different membrane anchoring regions. We show that single pass and multispanning ERAD substrates are subjected to glycan-dependent degradation by the HRD1 complex. However, the presence of a powerful ER exit signal in the multispanning ERAD substrates causes competition with ER quality control and targeting of misfolded glycoproteins to the vacuole. Our results demonstrate that the same machinery is used for degradation of topologically different misfolded glycoproteins in the ER of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Glicoproteínas/metabolismo , Pliegue de Proteína , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo
4.
J Bone Miner Metab ; 37(5): 900-912, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30843129

RESUMEN

Numerous studies have demonstrated the advantages of plant cell suspension culture systems in producing bioactive recombinant human growth factors. This study investigated the biological activity of recombinant basic human fibroblast growth factor (rhFGF2) protein produced by a plant culture system to enhance new bone formation in a bone defect mouse model. The human FGF2 cDNA gene was cloned into a plant expression vector driven by the rice α-amylase 3D promoter. The vector was introduced into rice calli (Oryza sativa L. cv. Dongjin), and the clone with the highest expression of rhFGF2 was selected. Maximum accumulation of rhFGF2 protein (approximately 28 mg/l) was reached at 13 day post-incubation. Male C57BL/6 mice underwent calvarial defect surgery and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 5 µg of plant-derived rhFGF2 (p-FGF2) protein or E. coli-derived rhFGF2 (e-FGF2) protein. Similar to the effects of e-FGF2, local delivery with p-FGF2 enhanced bone healing in the damaged region to higher levels than the ACS group. Exogenous addition of p-FGF2 or e-FGF2 exhibited similar effects on proliferation, mineralization, and osteogenic marker expression in MC3T3-E1 cells. Together, the current findings support the usefulness of this plant-based expression system for the production of biologically active rhFGF2.


Asunto(s)
Suplementos Dietéticos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Oryza/genética , Osteogénesis/efectos de los fármacos , Proteínas Recombinantes/farmacología , Cráneo/patología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Escherichia coli/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/aislamiento & purificación , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Cráneo/efectos de los fármacos
5.
Plant Biotechnol J ; 15(2): 197-206, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27421111

RESUMEN

Plants are attractive hosts for the production of recombinant glycoproteins for therapeutic use. Recent advances in glyco-engineering facilitate the elimination of nonmammalian-type glycosylation and introduction of missing pathways for customized N-glycan formation. However, some therapeutically relevant recombinant glycoproteins exhibit unwanted truncated (paucimannosidic) N-glycans that lack GlcNAc residues at the nonreducing terminal end. These paucimannosidic N-glycans increase product heterogeneity and may affect the biological function of the recombinant drugs. Here, we identified two enzymes, ß-hexosaminidases (HEXOs) that account for the formation of paucimannosidic N-glycans in Nicotiana benthamiana, a widely used expression host for recombinant proteins. Subcellular localization studies showed that HEXO1 is a vacuolar protein and HEXO3 is mainly located at the plasma membrane in N. benthamiana leaf epidermal cells. Both enzymes are functional and can complement the corresponding HEXO-deficient Arabidopsis thaliana mutants. In planta expression of HEXO3 demonstrated that core α1,3-fucose enhances the trimming of GlcNAc residues from the Fc domain of human IgG. Finally, using RNA interference, we show that suppression of HEXO3 expression can be applied to increase the amounts of complex N-glycans on plant-produced human α1-antitrypsin.


Asunto(s)
Nicotiana/metabolismo , Polisacáridos/biosíntesis , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Membrana Celular/metabolismo , Genes de Plantas , Glicosilación , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Polisacáridos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Nicotiana/enzimología , Nicotiana/genética , Vacuolas/metabolismo
6.
Methods Mol Biol ; 2772: 221-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411817

RESUMEN

Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum (ER). In plants, the N-glycans play a pivotal role in protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate-binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.


Asunto(s)
Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Glicosilación , Glicoproteínas , Polisacáridos
7.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251142

RESUMEN

Double buffer layers composed of (AlxGa1-x)2O3/Ga2O3 structures were employed to grow a Sn-doped α-Ga2O3 epitaxial thin film on a sapphire substrate using mist chemical vapor deposition. The insertion of double buffer layers improved the crystal quality of the upper-grown Sn-doped α-Ga2O3 thin films by blocking dislocation generated by the substrates. Rapid thermal annealing was conducted for the double buffer layers at phase transition temperatures of 700-800 °C. The slight mixing of κ and ß phases further improved the crystallinity of the grown Sn-Ga2O3 thin film through local lateral overgrowth. The electron mobility of the Sn-Ga2O3 thin films was also significantly improved due to the smoothened interface and the diffusion of Al. Therefore, rapid thermal annealing with the double buffer layer proved advantageous in achieving strong electrical properties for Ga2O3 semiconductor devices within a shorter processing time.

8.
Plants (Basel) ; 12(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37653856

RESUMEN

Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.

9.
Genes (Basel) ; 14(8)2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37628644

RESUMEN

Tiller number is an important trait associated with yield in rice. Tiller number in Korean japonica rice was analyzed under greenhouse conditions in 160 recombinant inbred lines (RILs) derived from a cross between the temperate japonica varieties Odae and Unbong40 to identify quantitative trait loci (QTLs). A genetic map comprising 239 kompetitive allele-specific PCR (KASP) and 57 cleaved amplified polymorphic sequence markers was constructed. qTN3, a major QTL for tiller number, was identified at 132.4 cm on chromosome 3. This QTL was also detected under field conditions in a backcross population; thus, qTN3 was stable across generations and environments. qTN3 co-located with QTLs associated with panicle number per plant and culm diameter, indicating it had pleiotropic effects. The qTN3 regions of Odae and Unbong40 differed in a known functional variant (4 bp TGTG insertion/deletion) in the 5' UTR of OsTB1, a gene underlying variation in tiller number and culm strength. Investigation of variation in genotype and tiller number revealed that varieties with the insertion genotype had lower tiller numbers than those with the reference genotype. A high-resolution melting marker was developed to enable efficient marker-assisted selection. The QTL qTN3 will therefore be useful in breeding programs developing japonica varieties with optimal tiller numbers for increased yield.


Asunto(s)
Oryza , Humanos , Oryza/genética , Fitomejoramiento , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Regiones no Traducidas 5' , República de Corea
10.
Materials (Basel) ; 15(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35161000

RESUMEN

This study examined the microstructural gradation in Sn-doped, n-type Ga2O3 epitaxial layers grown on a two-inch sapphire substrate using horizontal hot-wall mist chemical vapor deposition (mist CVD). The results revealed that, compared to a single Ga2O3 layer grown using a conventional single-step growth, the double Ga2O3 layers grown using a two-step growth process exhibited excellent thickness uniformity, surface roughness, and crystal quality. In addition, the spatial gradient of carrier concentration in the upper layer of the double layers was significantly affected by the mist flow velocity at the surface, regardless of the dopant concentration distribution of the underlying layer. Furthermore, the electrical properties of the single Ga2O3 layer could be attributed to various scattering mechanisms, whereas the carrier mobility of the double Ga2O3 layers could be attributed to Coulomb scattering owing to the heavily doped condition. It strongly suggests the two-step-grown, lightly-Sn-doped Ga2O3 layer is feasible for high power electronic devices.

11.
Genes (Basel) ; 13(5)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35627177

RESUMEN

The development of efficient, robust, and high-throughput SNP genotyping platforms is pivotal for crop genetics and breeding. Recently, SNP genotyping platforms based on target capture sequencing, which is very flexible in terms of the number of SNP markers, have been developed for maize, cassava, and fava bean. We aimed to develop a target capture sequencing SNP genotyping platform for rice. A target capture sequencing panel containing 2565 SNPs, including 1225 SNPs informative for japonica and 1339 SNPs informative for indica, was developed. This platform was used in diversity analysis of 50 rice varieties. Of the 2565 SNP markers, 2341 (91.3%) produced useful polymorphic genotype data, enabling the production of a phylogenetic tree of the 50 varieties. The mean number of markers polymorphic between any two varieties was 854. The platform was used for QTL mapping of preharvest sprouting (PHS) resistance in an F8 recombinant inbred line population derived from the cross Odae × Joun. A genetic map comprising 475 markers was constructed, and two QTLs for PHS resistance were identified on chromosomes 4 and 11. This system is a powerful tool for rice genetics and breeding and will facilitate QTL studies and gene mapping, germplasm diversity analysis, and marker-assisted selection.


Asunto(s)
Oryza , Genotipo , Oryza/genética , Filogenia , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
12.
Plant Biotechnol J ; 9(9): 1109-19, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21801300

RESUMEN

The rice α-amylase 3D promoter system, which is activated under sucrose-starved conditions, has emerged as a useful system for producing recombinant proteins. However, using rice as the production system for therapeutic proteins requires modifications of the N-glycosylation pattern because of the potential immunogenicity of plant-specific sugar residues. In this study, glyco-engineered rice were generated as a production host for therapeutic glycoproteins, using RNA interference (RNAi) technology to down-regulate the endogenous α-1,3-fucosyltransferase (α-1,3-FucT) and ß-1,2-xylosyltransferase (ß-1,2-XylT) genes. N-linked glycans from the RNAi lines were identified, and their structures were compared with those isolated from a wild-type cell suspension. The inverted-repeat chimeric RNA silencing construct of α-1,3-fucosyltransferase and ß-1,2-xylosyltransferase (Δ3FT/XT)-9 glyco-engineered line with significantly reduced core α-1,3-fucosylated and/or ß-1,2-xylosylated glycan structures was established. Moreover, levels of plant-specific α-1,3-fucose and/or ß-1,2-xylose residues incorporated into recombinant human granulocyte/macrophage colony-stimulating factor (hGM-CSF) produced from the N44 + Δ3FT/XT-4 glyco-engineered line co-expressing ihpRNA of Δ3FT/XT and hGM-CSF were significantly decreased compared with those in the previously reported N44-08 transgenic line expressing hGM-CSF. None of the glyco-engineered lines differed from the wild type with respect to cell division, proliferation or ability to secrete proteins into the culture medium.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Oryza/metabolismo , Polisacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Técnicas de Cultivo de Célula , Clonación Molecular , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Glicosilación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Oryza/genética , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ingeniería de Proteínas/métodos , Interferencia de ARN , Proteínas Recombinantes/genética , Transformación Genética , Xilosa/metabolismo
13.
Protein Expr Purif ; 76(1): 121-6, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20951807

RESUMEN

A synthetic bovine trypsinogen (sbTrypsinogen) was synthesized on the basis of rice-optimized codon usage via an overlap PCR strategy, prior to being expressed under the control of the sucrose starvation-inducible rice α-amylase 3D (RAmy3D) promoter. Secretion of trypsin into the culture medium was achieved by using the existing signal peptide. The plant expression vector was introduced into rice calli (Oryza sativa L. cv. Dongjin), mediated by Agrobacterium tumefaciens. The integration of the sbTrypsinogen gene into the chromosome of the transgenic rice callus was verified via genomic DNA PCR amplification, and sbTrypsin expression in transgenic rice suspension cells was confirmed via Northern blot analysis. Western blot analysis detected glycosylated proteins in the culture medium, having masses from 24 to 26 kDa, following induction by sugar starvation. Proteolytic activity of the rice-derived trypsin was confirmed by gelatin zymogram, and was similar to that of the commercial bovine-produced trypsin. The yields of sbTrypsin that accumulated in the transgenic rice cell suspension medium were 15 mg/L at 5 days after sugar starvation.


Asunto(s)
Oryza , Plantas Modificadas Genéticamente , Proteínas Recombinantes/biosíntesis , Tripsina/biosíntesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Células Cultivadas , Medios de Cultivo Condicionados , Vectores Genéticos , Datos de Secuencia Molecular , Tripsinógeno/biosíntesis
14.
Front Plant Sci ; 12: 689104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211491

RESUMEN

Nicotiana benthamiana is used worldwide as production host for recombinant proteins. Many recombinant proteins such as monoclonal antibodies, growth factors or viral antigens require posttranslational modifications like glycosylation for their function. Here, we transiently expressed different variants of the glycosylated receptor binding domain (RBD) from the SARS-CoV-2 spike protein in N. benthamiana. We characterized the impact of variations in RBD-length and posttranslational modifications on protein expression, yield and functionality. We found that a truncated RBD variant (RBD-215) consisting of amino acids Arg319-Leu533 can be efficiently expressed as a secreted soluble protein. Purified RBD-215 was mainly present as a monomer and showed binding to the conformation-dependent antibody CR3022, the cellular receptor angiotensin converting enzyme 2 (ACE2) and to antibodies present in convalescent sera. Expression of RBD-215 in glycoengineered ΔXT/FT plants resulted in the generation of complex N-glycans on both N-glycosylation sites. While site-directed mutagenesis showed that the N-glycans are important for proper RBD folding, differences in N-glycan processing had no effect on protein expression and function.

15.
Genes (Basel) ; 12(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34828355

RESUMEN

Next-generation sequencing technologies have enabled the discovery of numerous sequence variations among closely related crop varieties. We analyzed genome resequencing data from 24 Korean temperate japonica rice varieties and discovered 954,233 sequence variations, including 791,121 single nucleotide polymorphisms (SNPs) and 163,112 insertions/deletions (InDels). On average, there was one variant per 391 base-pairs (bp), a variant density of 2.6 per 1 kbp. Of the InDels, 10,860 were longer than 20 bp, which enabled conversion to markers resolvable on an agarose gel. The effect of each variant on gene function was predicted using the SnpEff program. The variants were categorized into four groups according to their impact: high, moderate, low, and modifier. These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%), and 898,178 (94.1%) variants, respectively. To test the accuracy of these data, eight InDels from a pre-harvest sprouting resistance QTL (qPHS11) target region, four highly polymorphic InDels, and four functional sequence variations in known agronomically important genes were selected and successfully developed into markers. These results will be useful to develop markers for marker-assisted selection, to select candidate genes in map-based cloning, and to produce efficient high-throughput genome-wide genotyping systems for Korean temperate japonica rice varieties.


Asunto(s)
Mutación INDEL , Oryza/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/genética , Sitios de Carácter Cuantitativo , República de Corea
16.
Front Chem ; 9: 816544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178379

RESUMEN

Glycosylation of viral envelope proteins is important for infectivity and immune evasion. The SARS-CoV-2 spike protein is heavily glycosylated and host-derived glycan modifications contribute to the formation of specific immunogenic epitopes, enhance the virus-cell interaction or affect virus transmission. On recombinant viral antigens used as subunit vaccines or for serological assays, distinct glycan structures may enhance the immunogenicity and are recognized by naturally occurring antibodies in human sera. Here, we performed an in vivo glycoengineering approach to produce recombinant variants of the SARS-CoV-2 receptor-binding domain (RBD) with blood group antigens in Nicotiana benthamiana plants. SARS-CoV-2 RBD and human glycosyltransferases for the blood group ABH antigen formation were transiently co-expressed in N. benthamiana leaves. Recombinant RBD was purified and the formation of complex N-glycans carrying blood group A antigens was shown by immunoblotting and MS analysis. Binding to the cellular ACE2 receptor and the conformation-dependent CR3022 antibody showed that the RBD glycosylation variants carrying blood group antigens were functional. Analysis of sera from RBD-positive and RBD-negative individuals revealed further that non-infected RBD-negative blood group O individuals have antibodies that strongly bind to RBD modified with blood group A antigen structures. The binding of IgGs derived from sera of non-infected RBD-negative blood group O individuals to blood group A antigens on SARS-CoV-2 RBD suggests that these antibodies could provide some degree of protection from virus infection.

17.
Front Plant Sci ; 12: 747500, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646292

RESUMEN

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in the virus-host cell interaction, and viral infection. The RBD is a major target for neutralizing antibodies, whilst recombinant RBD is commonly used as an antigen in serological assays. Such assays are essential tools to gain control over the pandemic and detect the extent and durability of an immune response in infected or vaccinated populations. Transient expression in plants can contribute to the fast production of viral antigens, which are required by industry in high amounts. Whilst plant-produced RBDs are glycosylated, N-glycan modifications in plants differ from humans. This can give rise to the formation of carbohydrate epitopes that can be recognized by anti-carbohydrate antibodies present in human sera. For the performance of serological tests using plant-produced recombinant viral antigens, such cross-reactive carbohydrate determinants (CCDs) could result in false positives. Here, we transiently expressed an RBD variant in wild-type and glycoengineered Nicotiana benthamiana leaves and characterized the impact of different plant-specific N-glycans on RBD reactivity in serological assays. While the overall performance of the different RBD glycoforms was comparable to each other and to a human cell line produced RBD, there was a higher tendency toward false positive results with sera containing allergy-related CCD-antibodies when an RBD carrying ß1,2-xylose and core α1,3-fucose was used. These rare events could be further minimized by pre-incubating sera from allergic individuals with a CCD-inhibitor. Thereby, false positive signals obtained from anti-CCD antibodies, could be reduced by 90%, on average.

18.
Materials (Basel) ; 13(3)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024120

RESUMEN

Silicon carbide (SiC) is an ideal material for highpower and highperformance electronic applications. Topseeded solution growth (TSSG) is considered as a potential method for bulk growth of highquality SiC single crystals from the liquid phase source material. The crystal growth performance, such as growth rate and uniformity, is driven by the fluid flow and constitutional flux in the solution. In this study, we numerically investigate the contribution of the external static magnetic field generated by Helmholtz coils to the fluid flow in the silicon melt. Depending on the setup of the Helmholtz coils, four static magnetic field distributions are available, namely, uniform vertical upward/downward and vertical/horizontal cusp. Based on the calculated carbon flux coming to the crystal surface, the vertical downward magnetic field proved its ability to enhance the growth rate as well as the uniformity of the grown crystal.

19.
RSC Adv ; 9(45): 26327-26337, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35531043

RESUMEN

In this study, multiphysics simulations were carried out to understand the convection mechanisms of the top seeded solution growth (TSSG) of SiC. Experimental melting tests and crystal growth were conducted to verify the simulation results in the growing temperatures between 1700 and 1900 °C with rf induction heating furnace. From the solidified melt of Si-Cr solution after the melting test, the melt flow in the simulation was successfully verified. In the given experimental conditions, the electromagnetic convection was found to govern the global fluid flow, while other mechanisms including the Marangoni convection, the buoyancy convection and the centrifugal forced convection influence the fluid flow near the crystal. Based on an understanding of the fluid flow obtained with the simulations, a structural flow modifier (FM) was applied to enhance the growth rate of the SiC crystal. The growth rates of SiC with/without FM were successfully estimated from simulations showing good agreements with the experimental values. After the experimental crystal growth using FM, a remarkable enhancement in the growth rate was found in an FM configuration, which suggests a way to improve the growth rate by the TSSG method based on the efficient use of the dissolved C in the melt.

20.
Protein Expr Purif ; 61(2): 117-21, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18634882

RESUMEN

The synthetic gene (sPI-II) harboring the chymotrypsin (C1) and trypsin (T1) inhibitor domains of the Nicotiana alata serine proteinase inhibitor II gene has been previously expressed, and extracellular protease activity was shown to be reduced in the suspension culture medium. In this study, the sPI-II gene was introduced into transgenic rice cells expressing rhGM-CSF (recombinant human granulocyte-macrophage colony-stimulating factor), in an effort to reduce protease activity and increase rhGM-CSF accumulation in the suspension culture medium. The integration and expression of the introduced sPI-II gene in the transgenic rice cells were verified via genomic DNA PCR amplification and Northern blot analysis, respectively. Relative protease activity was found to have been reduced and rhGM-CSF production was increased 2-fold in the co-transformed cell suspension culture with rhGM-CSF and the sPI-II gene, as compared with that observed in the transformed cell suspension culture expressing rhGM-CSF only. These results indicate that a transformed plant cell suspension culture system expressing the proteinase inhibitor can be a useful tool for increasing recombinant protein production.


Asunto(s)
Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Oryza/genética , Plantas Modificadas Genéticamente/genética , Inhibidores de Serina Proteinasa/genética , Northern Blotting , Técnicas de Cultivo de Célula , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/metabolismo , Activación Enzimática/genética , Vectores Genéticos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Factor Estimulante de Colonias de Granulocitos y Macrófagos/aislamiento & purificación , Humanos , Oryza/citología , Oryza/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Proteínas Recombinantes , Inhibidores de Serina Proteinasa/biosíntesis , Factores de Tiempo , Nicotiana/genética , Transformación Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA