RESUMEN
The question of whether behavioral traits are heritable is under debate. An obstacle in demonstrating transgenerational inheritance in mammals originates from the maternal environment's effect on offspring phenotype. Here, we used in ovo embryonic heat conditioning (EHC) of first-generation chicks, demonstrating heredity of both heat and immunological resilience, confirmed by a reduced fibril response in their untreated offspring to either heat or LPS challenge. Concordantly, transcriptome analysis confirmed that EHC induces changes in gene expression in the anterior preoptic hypothalamus (APH) that contribute to these phenotypes in the offspring. To study the association between epigenetic mechanisms and trait heritability, DNA-methylation patterns in the APH of offspring of control versus EHC fathers were evaluated. Genome-wide analysis revealed thousands of differentially methylated sites (DMSs), which were highly enriched in enhancers and CCCTC-binding factor (CTCF) sites. Overlap analysis revealed 110 differentially expressed genes that were associated with altered methylation, predominantly on enhancers. Gene-ontology analysis shows pathways associated with immune response, chaperone-mediated protein folding, and stress response. For the proof of concept, we focused on HSP25 and SOCS3, modulators of heat and immune responses, respectively. Chromosome conformational capture (3C) assay identified interactions between their promoters and methylated enhancers, with the strongest frequency on CTCF binding sites. Furthermore, gene expression corresponded with the differential methylation patterns, and presented increased CTCF binding in both hyper- and hypomethylated DMSs. Collectively, we demonstrate that EHC induces transgenerational thermal and immunological resilience traits. We propose that one of the mechanisms underlying inheritance depends on three-dimensional (3D) chromatin reorganization.
Asunto(s)
Epigénesis Genética , Calor , Animales , Pollos , Metilación de ADN , Patrón de Herencia , Mamíferos , Procesamiento Proteico-PostraduccionalRESUMEN
Among land vertebrates, the laying hen stands out due to its great reproductive efficiency: producing an egg daily all year long. This production rate makes the laying hen a special model animal to study the general process of reproduction and aging. One unique aspect of hens is their ability to undergo reproductive plasticity and to rejuvenate their reproductive tract during molting, a standard industrial feed restriction protocol for transiently pausing reproduction, followed by improved laying efficiency almost to peak production. Here we use longitudinal metabolomics, immunology, and physiological assays to show that molting promotes reproduction, compresses morbidity, and restores youthfulness when applied to old hens. We identified circulating metabolic biomarkers that quantitatively predict the reproduction and age of individuals. Lastly, we introduce metabolic noise, a robust, unitless, and quantifiable measure for heterogeneity of the complete metabolome as a general marker that can indicate the rate of aging of a population. Indeed, metabolic noise increased with age in control hens, whereas molted hens exhibited reduced noise following molting, indicating systemic rejuvenation. Our results suggest that metabolic noise can be used as a quick and universal proxy for assessing successful aging treatments, accelerating the timeline for drug development.
Asunto(s)
Pollos , Rejuvenecimiento , Humanos , Animales , Femenino , Pollos/fisiología , Restricción Calórica , Reproducción/fisiología , Muda/fisiologíaRESUMEN
This study compares the effects of modern colony cage systems and traditional floor systems on the production and welfare of broiler chickens. Through two trials spanning 35 days each, we evaluated various physiological parameters, including growth performance, bone health, stress responses, and meat quality. Colony cages demonstrated superior thermal regulation and growth performance compared to traditional floor systems, but also exhibited higher frequencies of leg deformity and reduced standing ability. Conversely, the broilers in traditional floor systems experienced heat stress-related challenges, impacting the meat quality. Our findings underscore the need to balance productivity with animal welfare in broiler farming practices. By understanding the distinct impacts of different housing systems, we can work towards improving broiler rearing methods to ensure optimal welfare and production outcomes.
RESUMEN
In all vertebrates, hypoxia plays an important role in fetal development, driving vasculogenesis, angiogenesis, hematopoiesis, and chondrogenesis. Therefore, the ability to sense and respond to changes in the availability of oxygen (O2) is crucial for normal embryonic development as well as for developmental plasticity. Moderate levels of hypoxia trigger a regulated process which leads to adaptive responses. Regulation of angiogenesis by hypoxia is an important component of homeostatic control mechanisms that link the cardio-pulmonary-vascular O2 supply to metabolic demands in local tissues. Hypoxia leads to the activation of genes that are important for cell and tissue adaptation to low O2 conditions, such as hypoxia-inducible factor 1. Previous studies have shown a dose-response effect to hypoxia in chicken embryos, with lower and/or prolonged O2 levels affecting multiple mechanisms and providing a spectrum of responses that facilitate the ability to maintain O2 demand despite environmental hypoxia. In chicken embryos, mild to extreme hypoxia during embryogenesis improves chorioallantoic membrane and cardiovascular development, resulting in an increase in O2 carrying capacity and leading to developmental plasticity that may affect post-hatch chick performance and improve adaptation to additional environmental stresses at suboptimal environmental conditions.
Asunto(s)
Pollos , Hipoxia , Animales , Embrión de Pollo , Pollos/fisiología , Membrana Corioalantoides/embriología , Desarrollo Embrionario/fisiología , Hipoxia/veterinaria , Oxígeno/metabolismoRESUMEN
Early life encounters with stress can lead to long-lasting beneficial alterations in the response to various stressors, known as cross-tolerance. Embryonic heat conditioning (EHC) of chicks was previously shown to mediate resilience to heat stress later in life. Here we demonstrate that EHC can induce cross-tolerance with the immune system, attenuating hypothalamic inflammation. Inflammation in EHC chicks was manifested, following lipopolysaccharide (LPS) challenge on day 10 post-hatch, by reduced febrile response and reduced expression of LITAF and NFκB compared to controls, as well as nuclear localization and activation of NFκB in the hypothalamus. Since the cross-tolerance effect was long-lasting, we assumed that epigenetic mechanisms are involved. We focused on the role of ten-eleven translocation (TET) family enzymes, which are the mediators of active CpG demethylation. Here, TET transcription during early life stress was found to be necessary for stress resilience later in life. The expression of the TET family enzymes in the midbrain during conditioning increased in parallel to an elevation in concentration of their cofactor α-ketoglutarate. In-ovo inhibition of TET activity during EHC, by the α-ketoglutarate inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES), resulted in reduced total and locus specific CpG demethylation in 10-day-old chicks and reversed both thermal and inflammatory resilience. In addition, EHC attenuated the elevation in expression of the stress markers HSP70, CRHR1, and CRHR2, during heat challenge on day 10 post-hatch. This reduction in expression was reversed by BPTES. Similarly, the EHC-dependent reduction of inflammatory gene expression during LPS challenge was eliminated in BPTES-treated chicks. Thus, TET family enzymes and CpG demethylation are essential for the embryonic induction of stress cross-tolerance in the hypothalamus.
RESUMEN
Agonists of membranal melanocortin 3 and 4 receptors (MC3/4Rs) are known to take part in the complex control mechanism of energy balance. In this study, we compared the physiological response to an exogenous MC3/4R agonist and the hypothalamic expression of proopic melanocortin (POMC) gene, encoding few MC3/4R ligands, between broiler and layer chicken strains. These strains, representing the two most prominent commercial strains of chickens grown for meat (broilers) and egg production (layers), differ in their food intake, fat accumulation, and reproductive performance and, therefore, form a good model of obese and lean phenotypes, respectively. A single i.v. injection of the synthetic peptide melanotan-II (MT-II; 1 mg/kg body weight) into the wing vein of feed-restricted birds led to attenuation of food intake upon exposure to feeding ad libitum in both broiler and layer chickens. A study of the POMC mRNA encoding the two prominent natural MC3/4R agonists, alpha-MSH and ACTH, also revealed a general similarity between the strains. Under feeding conditions ad libitum, POMC mRNA levels were highly similar in chicks of both strains and this level was significantly reduced upon feed restriction. However, POMC mRNA down-regulation upon feed restriction was more pronounced in layers than in broilers. These results suggest: (i) a role for MC3/4R agonists in the control of appetite; (ii) that the physiological differences between broilers and layers are not related to unresponsiveness of broiler chickens to the satiety signal of MC3/4R ligands. Therefore, these findings suggest that artificial activation of this circuit in broiler chicks could help to accommodate with their agricultural shortcomings of overeating, fattening, and impaired reproduction.
Asunto(s)
Pollos/metabolismo , Obesidad/metabolismo , Péptidos Cíclicos/farmacología , Receptor de Melanocortina Tipo 4/agonistas , alfa-MSH/análogos & derivados , alfa-MSH/metabolismo , Animales , Femenino , Expresión Génica , Hipotálamo/metabolismo , Fenotipo , Proopiomelanocortina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie , alfa-MSH/farmacologíaRESUMEN
Leptin, the key regulator of mammalian energy balance, has been at the center of a great controversy in avian biology for the last 15 years since initial reports of a putative leptin gene (LEP) in chickens. Here, we characterize a novel LEP in rock dove (Columba livia) with low similarity of the predicted protein sequence (30% identity, 47% similarity) to the human ortholog. Searching the Sequence-Read-Archive database revealed leptin transcripts, in the dove's liver, with 2 noncoding exons preceding 2 coding exons. This unusual 4-exon structure was validated by sequencing of a GC-rich product (76% GC, 721 bp) amplified from liver RNA by RT-PCR. Sequence alignment of the dove leptin with orthologous leptins indicated that it consists of a leader peptide (21 amino acids; aa) followed by the mature protein (160 aa), which has a putative structure typical of 4-helical-bundle cytokines except that it is 12 aa longer than human leptin. Extra residues (10 aa) were located within the loop between 2 5'-helices, interrupting the amino acid motif that is conserved in tetrapods and considered essential for activation of leptin receptor (LEPR) but not for receptor binding per se. Quantitative RT-PCR of 11 tissues showed highest (P < .05) expression of LEP in the dove's liver, whereas the dove LEPR peaked (P < .01) in the pituitary. Both genes were prominently expressed in the gonads and at lower levels in tissues involved in mammalian leptin signaling (adipose; hypothalamus). A bioassay based on activation of the chicken LEPR in vitro showed leptin activity in the dove's circulation, suggesting that dove LEP encodes an active protein, despite the interrupted loop motif. Providing tools to study energy-balance control at an evolutionary perspective, our original demonstration of leptin signaling in dove predicts a more ancient role of leptin in growth and reproduction in birds, rather than appetite control.
Asunto(s)
Proteínas Aviares/genética , Columbidae/genética , Leptina/genética , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Pollos , Columbidae/metabolismo , Exones , Humanos , Leptina/química , Leptina/metabolismo , Hígado/metabolismo , Datos de Secuencia Molecular , Filogenia , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Alineación de Secuencia , PavosRESUMEN
The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of â¼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.
Asunto(s)
Embrión de Pollo , Técnicas de Transferencia de Gen , Vectores Genéticos , Virus de la Inmunodeficiencia Felina/genética , Animales , Animales Modificados Genéticamente , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Células Cultivadas , Embrión de Pollo/metabolismo , Embrión de Pollo/virología , Pollos/genética , Membrana Corioalantoides/metabolismo , Membrana Corioalantoides/virología , Cartilla de ADN/genética , Hígado/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Distribución Tisular , Transducción Genética/métodos , alfa-MSH/genética , alfa-MSH/metabolismoRESUMEN
Three series of experiments were conducted with fast-growing chickens in order: to evaluate the effects of dietary Ca and P on cholecalciferol metabolism and expression; to determine dietary Ca requirements; to determine dietary P requirements. The results of the first series confirmed previous results on the effects of dietary Ca and P on some variables of vitamin D metabolism and expression, Ca homeostasis and P metabolism in the young chicken (1- to 21-d-old), and extended them to older birds (22- to 43-d-old). The bone formation rate and the duodenal calbindin content were maintained at high levels until the age of 43 d. Dietary Ca or P restriction increased duodenal calbindin and decreased bone ash in both 22- and 43-d-old chickens, but the effect on bone ash was less pronounced in the 43-d-old birds than in the younger ones. These results suggest that: (a) the capabilities for adaptation to dietary Ca and P restriction remain high during the whole growing period; (b) the growing broilers express a high adaptive capability even when the diet contains the recommended Ca and P contents. The results of the second and third series of experiments suggest that: (c) unlike the Ca requirements of the 1- to 22-d-old chick, P requirements for growth and bone ash are similar, and are as high in the older chicks as in the younger ones (7.4-8.3 g P/kg or 4.8-5.7 g non-phytate P/kg diet); (d) although growth and bone ash in the 29- to 43-d-old chickens appear to be less sensitive to dietary Ca content, within a range close to the calculated P requirement, 10 g Ca/kg diet appears to be required for best tibia mineralization, and to a lesser extent for better growth at this age.