Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genes Cells ; 24(1): 94-106, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417519

RESUMEN

Proteins in the nuclear envelope (NE) play a role in the dynamics and functions of the nucleus and of chromosomes during mitosis and meiosis. Mps3, a yeast NE protein with a conserved SUN domain, predominantly localizes on a yeast centrosome equivalent, spindle pole body (SPB), in mitotic cells. During meiosis, Mps3, together with SPB, forms a distinct multiple ensemble on NE. How meiosis-specific NE localization of Mps3 is regulated remains largely unknown. In this study, we found that a meiosis-specific component of the protein complex essential for sister chromatid cohesion, Rec8, binds to Mps3 during meiosis and controls Mps3 localization and proper dynamics on NE. Ectopic expression of Rec8 in mitotic yeast cells induced the formation of Mps3 patches/foci on NE. This required the cohesin regulator, WAPL ortholog, Rad61/Wpl1, suggesting that a meiosis-specific cohesin complex with Rec8 controls NE localization of Mps3. We also observed that two domains of the nucleoplasmic region of Mps3 are essential for NE localization of Mps3 in mitotic as well as meiotic cells. We speculate that the interaction of Mps3 with the meiosis-specific cohesin in the nucleoplasm is a key determinant for NE localization/function of Mps3.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Meiosis , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Membrana Nuclear/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Cohesinas
2.
EMBO Rep ; 17(1): 37-46, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26589352

RESUMEN

RNA-binding proteins (RBPs) play important roles for generating various cell types in many developmental processes, including eggs and sperms. Nanos is widely known as an evolutionarily conserved RNA-binding protein implicated in germ cell development. Mouse NANOS2 interacts directly with the CCR4-NOT (CNOT) deadenylase complex, resulting in the suppression of specific RNAs. However, the mechanisms involved in target specificity remain elusive. We show that another RBP, Dead end1 (DND1), directly interacts with NANOS2 to load unique RNAs into the CNOT complex. This interaction is mediated by the zinc finger domain of NANOS2, which is essential for its association with target RNAs. In addition, the conditional deletion of DND1 causes the disruption of male germ cell differentiation similar to that observed in Nanos2-KO mice. Thus, DND1 is an essential partner for NANOS2 that leads to the degradation of specific RNAs. We also present the first evidence that the zinc finger domain of Nanos acts as a protein-interacting domain for another RBP, providing a novel insight into Nanos-mediated germ cell development.


Asunto(s)
Diferenciación Celular , Células Germinales Embrionarias/fisiología , Proteínas de Neoplasias/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Germinales Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Noqueados , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Espermatozoides/fisiología , Dedos de Zinc/fisiología
3.
Genes Cells ; 21(10): 1125-1136, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27647735

RESUMEN

In eukaryotic cells, there are two chromatin states, silenced and active, and the formation of a so-called boundary plays a critical role in demarcating these regions; however, the mechanisms underlying boundary formation are not well understood. In this study, we focused on S. cerevisiae ADA1, a gene previously shown to encode a protein with a robust boundary function. Ada1 is a component of the histone modification complex Spt-Ada-Gcn5-acetyltransferase (SAGA) and the SAGA-like (SLIK) complex, and it helps to maintain the integrity of these complexes. Domain analysis showed that four relatively small regions of Ada1 (Region I; 66-75 aa, II; 232-282 aa, III; 416-436 aa and IV; 476-488 aa) have a boundary function. Among these, Region II could form an intact SAGA complex, whereas the other regions could not. Investigation of cellular factors that interact with these small regions identified a number of proteasome-associated proteins. Interestingly, the boundary functions of Region II and Region III were affected by depletion of Ump1, a maturation and assembly factor of the 20S proteasome. These results suggest that the boundary function of Ada1 is functionally linked to proteasome processes and that the four relatively small regions in ADA1 form a boundary via different mechanisms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Regulación Fúngica de la Expresión Génica , Pliegue de Proteína , Proteoma , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Transactivadores/fisiología
4.
Genes Dev ; 23(1): 18-23, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19136623

RESUMEN

Heterochromatin protein 1 (HP1) recruits various effectors to heterochromatin for multiple functions, but its regulation is unclear. In fission yeast, a HP1 homolog Swi6 recruits SHREC, Epe1, and cohesin, which are involved in transcriptional gene silencing (TGS), transcriptional activation, and sister chromatid cohesion, respectively. We found that casein kinase II (CK2) phosphorylated Swi6. Loss of CK2-dependent Swi6 phosphorylation alleviated heterochromatic TGS without affecting heterochromatin structure. This was due to the inhibited recruitment of SHREC to heterochromatin, accompanied by an increase in Epe1. Interestingly, loss of phosphorylation did not affect cohesion. These results indicate that CK2-dependent Swi6 phosphorylation specifically controls TGS in heterochromatin.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen/fisiología , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Fosforilación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
5.
Nucleic Acids Res ; 42(6): 3998-4007, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24413662

RESUMEN

The assembly of spliceosomal U snRNPs in metazoans requires nuclear export of U snRNA precursors. Four factors, nuclear cap-binding complex (CBC), phosphorylated adaptor for RNA export (PHAX), the export receptor CRM1 and RanGTP, gather at the m(7)G-cap-proximal region and form the U snRNA export complex. Here we show that the multifunctional RNA-binding proteins p54nrb/NonO and PSF are U snRNA export stimulatory factors. These proteins, likely as a heterodimer, accelerate the recruitment of PHAX, and subsequently CRM1 and Ran onto the RNA substrates in vitro, which mediates efficient U snRNA export in vivo. Our results reveal a new layer of regulation for U snRNA export and, hence, spliceosomal U snRNP biogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Factores de Transcripción de Octámeros/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Citoplasma/metabolismo , Proteínas de Unión al ADN , Células HeLa , Humanos , Carioferinas/metabolismo , Factor de Empalme Asociado a PTB , Fosfoproteínas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Xenopus , Proteína de Unión al GTP ran/metabolismo , Proteína Exportina 1
6.
Genes Cells ; 18(9): 823-37, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23819448

RESUMEN

The budding yeast Saccharomyces cerevisiae contains active and inactive chromatin separated by boundary domains. Previously, we used genome-wide screening to identify 55 boundary-related genes. Here, we focus on Sgf73, a boundary protein that is a component of the Spt-Ada-Gcn5 acetyltransferase (SAGA) and SLIK (SAGA-like) complexes. These complexes have histone acetyltransferase (HAT) and histone deubiquitinase activity, and Sgf73 is one of the factors necessary to anchor the deubiquitination module. Domain analysis of Sgf73 was carried out, and the minimum region (373-402 aa) essential for boundary function was identified. This minimum region does not include the domain involved in anchoring the deubiquitination module, suggesting that the histone deubiquitinase activity of Sgf73 is not important for its boundary function. Next, Sgf73-mediated boundary function was analyzed in disruption strains in which different protein subunits of the SAGA/SLIK/ADA complexes were deleted. Deletion of ada2, ada3 or gcn5 (a HAT module component) caused complete loss of the boundary function of Sgf73. The importance of SAGA or SLIK complex binding to the boundary function of Sgf73 was also analyzed. Western blot analysis detected both the full-length and truncated forms of Spt7, suggesting that SAGA and SLIK complex formation is important for the boundary function of Sgf73.


Asunto(s)
Heterocromatina/metabolismo , Histona Acetiltransferasas/metabolismo , Elementos Aisladores , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Biol Chem ; 286(17): 15391-402, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21385875

RESUMEN

Grc3 is an evolutionarily conserved protein. Genome-wide budding yeast studies suggest that Grc3 is involved in rRNA processing. In the fission yeast Schizosaccharomyces pombe, Grc3 was identified as a factor exhibiting distinct nuclear dot localization, yet its exact physiological function remains unknown. Here, we show that S. pombe Grc3 is required for both rRNA processing and heterochromatic gene silencing. Cytological analysis revealed that Grc3 nuclear dots correspond to heterochromatic regions and that some Grc3 is also present in the nucleolar peripheral region. Depleting the heterochromatic proteins Swi6 or Clr4 abolished heterochromatic localization of Grc3 and resulted in its preferential accumulation in the perinucleolar region, suggesting its dynamic association with these nuclear compartments. Cells expressing mutant grc3 showed defects in 25 S rRNA maturation and in heterochromatic gene silencing. Protein analysis of Grc3-containing complexes led to the identification of Las1 and components of the IPI complex (Rix1, Ipi1, and Crb3). All of these Grc3-interacting proteins showed a dynamic nuclear localization similar to that observed for Grc3, and those conditional mutants showed defects in both rRNA processing and silencing of centromeric transcripts. Our data suggest that Grc3 functions cooperatively with Las1 and the IPI complex in both ribosome biogenesis and heterochromatin assembly.


Asunto(s)
Silenciador del Gen , Heterocromatina , Proteínas Nucleares/fisiología , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Nucléolo Celular/metabolismo , Genes Fúngicos , Proteínas Mutantes/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética
8.
J Cell Sci ; 123(Pt 7): 1124-30, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20332121

RESUMEN

PALB2 physically and functionally connects the proteins encoded by the BRCA1 and BRCA2 breast and ovarian cancer genes into a DNA-damage-response network. However, it remains unclear how these proteins associate with chromatin that contains damaged DNA. We show here that PALB2 binds directly to a conserved chromodomain protein, MRG15, which is a component of histone acetyltransferase-deacetylase complexes. This interaction was identified by analysis of purified MRG15- and PALB2-containing protein complexes. Furthermore, MRG15 interacts with the entire BRCA complex, which contains BRCA1, PALB2, BRCA2 and RAD51. Interestingly, MRG15-deficient cells, similarly to cells deficient in PALB2 or BRCA2, showed reduced efficiency for homology-directed DNA repair and hypersensitivity to DNA interstrand crosslinking agents. Additionally, knockdown of MRG15 diminished the recruitment of PALB2, BRCA2 and RAD51 to sites of DNA damage and reduced chromatin loading of PALB2 and BRCA2. These results suggest that MRG15 mediates DNA-damage-response functions of the BRCA complex in chromatin.


Asunto(s)
Neoplasias de la Mama/genética , Reparación del ADN , ADN , Células Epiteliales/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Ováricas/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Cromatina/metabolismo , Rotura Cromosómica , Ensayo Cometa , Reactivos de Enlaces Cruzados/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Femenino , Genes BRCA1 , Predisposición Genética a la Enfermedad , Células HeLa , Humanos , Mitomicina/farmacología , Proteínas Nucleares/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Unión Proteica , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
9.
J Biol Chem ; 285(29): 22448-60, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20444689

RESUMEN

Lysine methylation is one of the most common protein modifications. Although lysine methylation of histones has been extensively studied and linked to gene regulation, that of non-histone proteins remains incompletely understood. Here, we show a novel regulatory role of ribosomal protein methylation. Using an in vitro methyltransferase assay, we found that Schizosaccharomyces pombe Set13, a SET domain protein encoded by SPAC688.14, specifically methylates lysine 55 of ribosomal protein L42 (Rpl42). Mass spectrometric analysis revealed that endogenous Rpl42 is monomethylated at lysine 55 in wild-type S. pombe cells and that the methylation is lost in Delta set13 mutant cells. Delta set13 and Rpl42 methylation-deficient mutant S. pombe cells showed higher cycloheximide sensitivity and defects in stress-responsive growth control compared with wild type. Genetic analyses suggested that the abnormal growth phenotype was distinct from the conserved stress-responsive pathway that modulates translation initiation. Furthermore, the Rpl42 methylation-deficient mutant cells showed a reduced ability to survive after entering stationary phase. These results suggest that Rpl42 methylation plays direct roles in ribosomal function and cell proliferation control independently of the general stress-response pathway.


Asunto(s)
Adaptación Fisiológica , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Aminoácidos , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Proliferación Celular/efectos de los fármacos , Cromatografía Liquida , Frío , Secuencia Conservada , Cicloheximida/toxicidad , Humanos , Lisina/metabolismo , Espectrometría de Masas , Metilación/efectos de los fármacos , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/efectos de los fármacos , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/química , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
10.
Alzheimers Dement (N Y) ; 7(1): e12182, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095441

RESUMEN

INTRODUCTION: Cilostazol may be a novel therapeutic agent for Alzheimer's disease. Its metabolite, OPC-13015, has a stronger inhibitory effect on type 3 phosphodiesterase than cilostazol. METHODS: We prospectively enrolled patients with mild cognitive impairment to whom cilostazol was newly prescribed. Patients underwent the Montreal Cognitive Assessment (MoCA) twice, at a 6-month interval. Plasma cilostazol, OPC-13015, OPC-13213, and OPC-13217 concentrations were determined using liquid chromatography-tandem mass spectrometry. RESULTS: MoCA score changes from baseline to the 6-month visit were positively correlated with ratios of OPC-13015 to cilostazol and total metabolites (n = 19, P = .005). Patients with higher ratios of OPC-13015 (≥0.18, median value; n = 10) had significantly higher MoCA scores (P = .036) than patients with lower ratios (the ratio <0.18, n = 9). The absolute value of OPC-13015 concentration in blood was also higher in patients with preserved cognitive function (P = .033). DISCUSSION: Blood OPC-13015 levels may be a predictive biomarker of cilostazol treatment for Alzheimer's disease.

11.
Dev Genes Evol ; 219(7): 353-60, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19609557

RESUMEN

How alpha and beta globin genes are organized and expressed in amniotes is of interest to researchers in a wide variety of fields. Data regarding this from avian species have been scarce. Using genomic and proteomic approaches, we present here our analysis of alpha and beta globins of zebra finch, a passerine bird. We show that finch alpha globin gene cluster has three genes (alphas 1-3), each orthologous to its chicken counterpart. Finch beta globin gene cluster has three genes (betas 1-3), with an additional pseudogene at the 3' end. Finch beta3 is orthologous to chicken betaA, but the orthology of beta1 and beta2 to chicken counterparts is less clear. All six finch globins are confirmed to encode functional proteins. Gene expression in both globin gene clusters is regulated developmentally. Adult finch blood has a globin profile similar to that of adult chicken, with high levels of beta3 and alpha3 and moderate levels of alpha2. Finch embryonic primitive blood exhibits a globin profile very different from that of equivalent stage chick embryos, with all six globins expressed at high levels. Overall, our data provide a valuable resource for future studies in avian globin gene evolution and globin switching during erythropoietic development.


Asunto(s)
Proteínas Aviares/genética , Pollos/genética , Pinzones/genética , Regulación del Desarrollo de la Expresión Génica , Globinas alfa/genética , Globinas beta/genética , Envejecimiento/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/metabolismo , Embrión no Mamífero/metabolismo , Eritropoyesis , Pinzones/crecimiento & desarrollo , Genoma , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Alineación de Secuencia , Globinas alfa/química , Globinas alfa/metabolismo , Globinas beta/química , Globinas beta/metabolismo
12.
Plant Cell Physiol ; 50(6): 1049-61, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19376783

RESUMEN

Recent studies have revealed various functions for the small ubiquitin-related modifier (SUMO) in diverse biological phenomena, such as regulation of cell division, DNA repair and transcription, in yeast and animals. In contrast, only a limited number of proteins have been characterized in plants, although plant SUMO proteins are involved in many physiological processes, such as stress responses, regulation of flowering time and defense reactions to pathogen attack. Here, we reconstituted the Arabidopsis thaliana SUMOylation cascade in Escherichia coli. This system is rapid and effective for the evaluation of the SUMOylation of potential SUMO target proteins. We tested the ability of this system to conjugate the Arabidopsis SUMO isoforms, AtSUMO1, 2, 3 and 5, to a model substrate, AtMYB30, which is an Arabidopsis transcription factor. All four SUMO isoforms tested were able to SUMOylate AtMYB30. Furthermore, SUMOylation sites of AtMYB30 were characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by mutational analysis in combination with this system. Using this reconstituted SUMOylation system, comparisons of SUMOylation patterns among SUMO isoforms can be made, and will provide insights into the SUMO isoform specificity of target modification. The identification of SUMOylation sites enables us to investigate the direct effects of SUMOylation using SUMOylation-defective mutants. This system will be a powerful tool for elucidation of the role of SUMOylation and of the biochemical and structural features of SUMOylated proteins in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Factores de Transcripción/metabolismo
13.
Nucleic Acids Res ; 34(12): 3555-67, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16855292

RESUMEN

The tails of core histones (H2A, H2B, H3 and H4) are critical for the regulation of chromatin dynamics. Each core histone tail is specifically recognized by various tail binding proteins. Here we screened for budding yeast histone H4-tail binding proteins in a protein differential display approach by two-dimensional gel electrophoresis (2DGE). To obtain highly enriched chromatin proteins, we used a Mg2+-dependent chromatin oligomerization technique. The Mg2+-dependent oligomerized chromatin from H4-tail deleted cells was compared with that from wild-type cells. We used mass spectrometry to identify 22 candidate proteins whose amounts were reduced in the oligomerized chromatin from the H4-tail deleted cells. A Saccharomyces Genome Database search revealed 10 protein complexes, each of which contained more than two candidate proteins. Interestingly, 7 out of the 10 complexes have the potential to associate with the H4-tail. We obtained in vivo evidence, by a chromatin immunoprecipitation assay, that one of the candidate proteins, Pwp1p, associates with the 25S ribosomal DNA (rDNA) chromatin in an H4-tail-dependent manner. We propose that the complex containing Pwp1p regulates the transcription of rDNA. Our results demonstrate that the protein differential display approach by 2DGE, using a histone-tail mutant, is a powerful method to identify histone-tail binding proteins.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Histonas/metabolismo , ARN Ribosómico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/aislamiento & purificación , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/aislamiento & purificación , Electroforesis en Gel Bidimensional , Histonas/genética , Magnesio/química , Nucleasa Microcócica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Eliminación de Secuencia
14.
Epigenetics Chromatin ; 11(1): 26, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866182

RESUMEN

BACKGROUND: Heat-shock molecular chaperone proteins (Hsps) promote the loading of small interfering RNA (siRNA) onto RNA interference (RNAi) effector complexes. While the RNAi process is coupled with heterochromatin assembly in several model organisms, it remains unclear whether the Hsps contribute to epigenetic gene regulation. In this study, we used the fission yeast Schizosaccharomyces pombe as a model organism and investigated the roles of Hsp90 and Mas5 (a nucleocytoplasmic type-I Hsp40 protein) in RNAi-dependent heterochromatin assembly. RESULTS: Using a genetic screen and biochemical analyses, we identified Hsp90 and Mas5 as novel silencing factors. Mutations in the genes encoding these factors caused derepression of silencing at the pericentromere, where heterochromatin is assembled in an RNAi-dependent manner, but not at the subtelomere, where RNAi is dispensable. The mutations also caused a substantial reduction in the level of dimethylation of histone H3 at Lys9 at the pericentromere, where association of the Argonaute protein Ago1 was also abrogated. Consistently, siRNA corresponding to the pericentromeric repeats was undetectable in these mutant cells. In addition, levels of Tas3, which is a protein in the RNA-induced transcriptional silencing complex along with Ago1, were reduced in the absence of Mas5. CONCLUSIONS: Our results suggest that the Hsps Hsp90 and Mas5 contribute to RNAi-dependent heterochromatin assembly. In particular, Mas5 appears to be required to stabilize Tas3 in vivo. We infer that impairment of Hsp90 and Hsp40 also may affect the integrity of the epigenome in other organisms.


Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Proteínas HSP90 de Choque Térmico/genética , Heterocromatina/genética , ARN Interferente Pequeño/genética , Schizosaccharomyces/genética , Proteínas Argonautas/metabolismo , Proteínas Portadoras/metabolismo , Centrómero/genética , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Metilación , Mutación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Nat Commun ; 8: 15662, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28585553

RESUMEN

P bodies (PBs) and stress granules (SGs) are conserved cytoplasmic aggregates of cellular messenger ribonucleoprotein complexes (mRNPs) that are implicated in mRNA metabolism and play crucial roles in adult stem cell homeostasis and stress responses. However, the mechanisms underlying the dynamics of mRNP granules are poorly understood. Here, we report NEDD4, an E3 ubiquitin ligase, as a key regulator of mRNP dynamics that controls the size of the spermatogonial progenitor cell (SPC) pool. We find that NEDD4 targets an RNA-binding protein, NANOS2, in spermatogonia to destabilize it, leading to cell differentiation. In addition, NEDD4 is required for SG clearance. NEDD4 targets SGs and facilitates their rapid clearance through the endosomal-lysosomal pathway during the recovery period. Therefore, NEDD4 controls the turnover of mRNP components and inhibits pathological SG accumulation. Accordingly, we propose that a NEDD4-mediated mechanism regulates mRNP dynamics, and facilitates SPC homeostasis and viability under normal and stress conditions.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4/fisiología , Ribonucleoproteínas/fisiología , Espermatogonias/fisiología , Células Madre/citología , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Transducción de Señal , Espermatogénesis , Temperatura , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación
16.
Genes Genet Syst ; 91(3): 151-159, 2016 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-27301280

RESUMEN

In Saccharomyces cerevisiae, HMR/HML, telomeres and ribosomal DNA are heterochromatin-like regions in which gene transcription is prevented by the silent information regulator (Sir) complex. The Sir complex (Sir2, Sir3 and Sir4) can spread through chromatin from the silencer. Boundaries prevent Sir complex spreading, and we previously identified 55 boundary genes among all ~6,000 yeast genes. These boundary proteins can be distinguished into two types: those that activate transcription to prevent spreading of silencing, and those that prevent gene silencing by forming a boundary. We selected 44 transcription-independent boundary proteins from the 55 boundary genes by performing a one-hybrid assay and focused on GIC1 (GTPase interaction component 1). Gic1 is an effector of Cdc42, which belongs to the Rho family of small GTPases, and has not been reported to function in heterochromatin boundaries in vivo. We detected a novel boundary-forming activity of Gic1 at HMR-left and telomeric regions by conducting a chromatin immunoprecipitation assay with an anti-Sir3 antibody. We also found that Gic1 bound weakly to histones in two-hybrid analysis. Moreover, we performed domain analysis to identify domain(s) of Gic1 that are important for its boundary activity, and identified two minimum domains, which are located outside its Cdc42-binding domain.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al ADN/genética , Heterocromatina/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/genética , Sitios de Unión , Histonas/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Telómero/genética
17.
Science ; 335(6076): 1643-6, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22461616

RESUMEN

Specific RNA recognition is usually achieved by specific RNA sequences and/or structures. However, we show here a mechanism by which RNA polymerase II (Pol II) transcripts are classified according to their length. The heterotetramer of the heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2 measures the length of the transcripts like a molecular ruler, by selectively binding to the unstructured RNA regions longer than 200 to 300 nucleotides. Thus, the tetramer sorts the transcripts into two RNA categories, to be exported as either messenger RNA or uridine-rich small nuclear RNA (U snRNA), depending on whether or not they are longer than the threshold, respectively. Our findings reveal a new function of the C tetramer and highlight the biological importance of RNA recognition by the length.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Transcripción Genética , Núcleo Celular/metabolismo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Humanos , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Multimerización de Proteína , Empalme del ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo
18.
PLoS One ; 7(1): e29683, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22276125

RESUMEN

We have previously identified the RNA recognition motif (RRM)-type RNA-binding protein Nrd1 as an important regulator of the posttranscriptional expression of myosin in fission yeast. Pmk1 MAPK-dependent phosphorylation negatively regulates the RNA-binding activity of Nrd1. Here, we report the role of Nrd1 in stress-induced RNA granules. Nrd1 can localize to poly(A)-binding protein (Pabp)-positive RNA granules in response to various stress stimuli, including heat shock, arsenite treatment, and oxidative stress. Interestingly, compared with the unphosphorylatable Nrd1, Nrd1(DD) (phosphorylation-mimic version of Nrd1) translocates more quickly from the cytoplasm to the stress granules in response to various stimuli; this suggests that the phosphorylation of Nrd1 by MAPK enhances its localization to stress-induced cytoplasmic granules. Nrd1 binds to Cpc2 (fission yeast RACK) in a phosphorylation-dependent manner and deletion of Cpc2 affects the formation of Nrd1-positive granules upon arsenite treatment. Moreover, the depletion of Nrd1 leads to a delay in Pabp-positive RNA granule formation, and overexpression of Nrd1 results in an increased size and number of Pabp-positive granules. Interestingly, Nrd1 deletion induced resistance to sustained stresses and enhanced sensitivity to transient stresses. In conclusion, our results indicate that Nrd1 plays a role in stress-induced granule formation, which affects stress resistance in fission yeast.


Asunto(s)
Ribonucleoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Arsenitos/farmacología , Cloruro de Cadmio/farmacología , Peróxido de Hidrógeno/farmacología , Cloruro de Potasio/farmacología , Unión Proteica/efectos de los fármacos , ARN de Hongos/metabolismo , Receptores de Cinasa C Activada , Receptores de Superficie Celular/metabolismo , Schizosaccharomyces/efectos de los fármacos , Compuestos de Sodio/farmacología , Temperatura
19.
Mol Cell Biol ; 32(12): 2279-88, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22493068

RESUMEN

Recent work identified the E3 ubiquitin ligase CRL4(Cdt2) as mediating the timely degradation of Cdt1 during DNA replication and following DNA damage. In both cases, proliferating cell nuclear antigen (PCNA) loaded on chromatin mediates the CRL4(Cdt2)-dependent proteolysis of Cdt1. Here, we demonstrate that while replication factor C subunit 1 (RFC1)-RFC is required for Cdt1 degradation after UV irradiation during the nucleotide excision repair process, another RFC complex, Ctf18-RFC, which is known to be involved in the establishment of cohesion, has a key role in Cdt1 degradation in S phase. Cdt1 segments having only the degron, a specific sequence element in target protein for ubiquitination, for CRL4(Cdt2) were stabilized during S phase in Ctf18-depleted cells. Additionally, endogenous Cdt1 was stabilized when both Skp2 and Ctf18 were depleted. Since a substantial amount of PCNA was detected on chromatin in Ctf18-depleted cells, Ctf18 is required in addition to loaded PCNA for Cdt1 degradation in S phase. Our data suggest that Ctf18 is involved in recruiting CRL4(Cdt2) to PCNA foci during S phase. Ctf18-mediated Cdt1 proteolysis occurs independent of cohesion establishment, and depletion of Ctf18 potentiates rereplication. Our findings indicate that individual RFC complexes differentially control CRL4(Cdt2)-dependent proteolysis of Cdt1 during DNA replication and repair.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Replicación C/metabolismo , Fase S/fisiología , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteolisis , Fase S/efectos de la radiación , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
20.
PLoS One ; 7(6): e39714, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768111

RESUMEN

Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development.


Asunto(s)
Riñón/embriología , Riñón/metabolismo , Cinesinas/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitinación , Secuencia de Aminoácidos , Animales , Línea Celular , Quinasas Ciclina-Dependientes/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Cinesinas/química , Ratones , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Ubiquitina-Proteína Ligasas Nedd4 , Fosforilación , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Unión Proteica , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA